Подпишись и читай
самые интересные
статьи первым!

Физика закон всемирного тяготения. Что такое гравитация для чайников: определение и теория простыми словами

Закон всемирного тяготения

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas - «тяжесть») - дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение . Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики , изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике , описывающей гравитацию, является общая теория относительности , квантовая теория гравитационного взаимодействия пока не построена.

Гравитационное взаимодействие

Гравитационное взаимодействие - одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики , гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием R , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть

.

Здесь G - гравитационная постоянная , равная примерно м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, то есть гравитационное взаимодействие приводит всегда к притяжению любых тел.

Закон всемирного тяготения - одно из приложений закона обратных квадратов, встречающегося так же и при изучении излучений (см. например, Давление света), и являющимся прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера .

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе , эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений , и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы , аттракторы , хаотичность и т. д. Наглядный пример таких явлений - нетривиальная структура колец Сатурна.

Несмотря на попытки описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса .

Сильные гравитационные поля

В сильных гравитационных полях, при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности :

  • отклонение закона тяготения от ньютоновского;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений ; появление гравитационных волн;
  • эффекты нелинейности: гравитационные волны имеют свойство взаимодействовать друг с другом, поэтому принцип суперпозиции волн в сильных полях уже не выполняется;
  • изменение геометрии пространства-времени;
  • возникновение черных дыр ;

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение , наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако, имеются косвенные наблюдательные свидетельства в пользу его существования, а именно: потери энергии в двойной системе с пульсаром PSR B1913+16 - пульсаром Халса-Тейлора - хорошо согласуются с моделью, в которой эта энергия уносится гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами , этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного l -польного источника пропорциональна (v / c ) 2l + 2 , если мультиполь имеет электрический тип, и (v / c ) 2l + 4 - если мультиполь магнитного типа , где v - характерная скорость движения источников в излучающей системе, а c - скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

где Q i j - тензор квадрупольного момента распределения масс излучающей системы. Константа (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)) и до настоящего времени (февраль 2007) предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (GEO 600), а также проект космического гравитационного детектора республики Татарстан .

Тонкие эффекты гравитации

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле . В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли, но его полные результаты пока не опубликованы.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация - единственное из фундаментальных взаимодействий, для которого пока ещё не построена непротиворечивая перенормируемая квантовая теория . Впрочем, при низких энергиях, в духе квантовой теории поля , гравитационное взаимодействие можно представить как обмен гравитонами - калибровочными бозонами со спином 2.

Стандартные теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности , и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой (см. статью Альтернативные теории гравитации). Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

  • Гравитация есть не геометрическое поле, а реальное физическое силовое поле, описываемое тензором.
  • Гравитационные явления следует рассматривать в рамках плоского пространства Минковского, в котором однозначно выполняются законы сохранения энергии-импульса и момента количества движения. Тогда движение тел в пространстве Минковского эквивалентно движению этих тел в эффективном римановом пространстве.
  • В тензорных уравнениях для определения метрики следует учитывать массу гравитона, а также использовать калибровочные условия, связанные с метрикой пространства Минковского. Это не позволяет уничтожить гравитационное поле даже локально выбором какой-то подходящей системы отсчёта.

Как и в ОТО, в РТГ под веществом понимаются все формы материи (включая и электромагнитное поле), за исключением самого гравитационного поля. Следствия из теории РТГ таковы: чёрных дыр как физических объектов, предсказываемых в ОТО, не существует; Вселенная плоская, однородная, изотропная, неподвижная и евклидовая.

C другой стороны, существуют не менее убедительные аргументы противников РТГ, сводящиеся к следующим положениям:

Подобное имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского . Благодаря наличию безразмерного подгоночного параметра в теории Йордана - Бранса - Дикке, появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов.

Теории гравитации
Классическая теория тяготения Ньютона Общая теория относительности Квантовая гравитация Альтернативные
  • Математическая формулировка общей теории относительности
  • Гравитация с массивным гравитоном
  • Геометродинамика (англ.)
  • Полуклассическая гравитация (англ.)
  • Биметрические теории
    • Скаляр-тензор-векторная гравитация (англ.)
    • Теория гравитации Уайтхеда (англ.)
  • Модифицированная ньютоновская динамика (англ.)
  • Составная гравитация (англ.)

Источники и примечания

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900-1915). М.: Наука, 1981. - 352c.
  • Визгин В. П. Единые теории в 1-й трети ХХ в. М.: Наука, 1985. - 304c.
  • Иваненко Д. Д. , Сарданашвили Г. А. Гравитация, 3-е изд. М.:УРСС, 2008. - 200с.

См. также

  • Гравиметр

Ссылки

  • Закон всемирного тяготения или «Почему Луна не падает на Землю?» - Просто о сложном

В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

Реферат

Тема: Закон всемирного тяготения

Введение

2 Закон всемирного тяготения

2.1 Открытие Исаака Ньютона

2.2 Движение тел под действием силы тяжести

3 ИСЗ - Искусственные спутники Земли

Заключение

Список используемой литературы

Введение

Человек, изучая явления, постигает их сущность и открывает законы природы. Так, поднятое над Землей и предоставленное самому себе тело начнет падать. Оно изменяет свою скорость, следовательно, на него действует сила тяжести. Это явление наблюдается повсюду на нашей планете: Земля притягивает к себе все тела, в том числе и нас с вами. Только ли Земля обладает свойством действовать на все тела силой притяжения?

Почти все в Солнечной системе вращается вокруг Солнца. У некоторых планет есть спутники, но и они, совершая свой путь вокруг планеты, вместе с нею движутся вокруг Солнца. Солнце обладает массой, превосходящую массу всего прочего населения Солнечной системы в 750 раз. Благодаря этому Солнце заставляет планеты и все остальное двигаться по орбитам вокруг себя. В космических масштабах масса является главной характеристикой тел, потому что все небесные тела подчиняются закону всемирного тяготения.

Исходя из законов движения планет, установленных И.Кеплером, великий английский ученый Исаак Ньютон (1643-1727), в ту пору никем еще признанный, открыл закон всемирного тяготения, с помощью которого удалось с большой точностью для того времени рассчитать движение Луны, планет и комет, объяснить приливы и отливы в океане.

Эти законы человек использует не только для более глубокого познания природы (например, для определения масс небесных тел), но и для решения практических задач (космонавтика, астродинамика).

Цель работы: изучить закон всемирного тяготения, показать его практическую значимость, раскрыть понятие взаимодействия тел на примере этого закона.

Работа состоит из введения, основной части, заключения и списка используемой литературы.

1 Законы движения планет – законы Кеплера

Чтобы в полной мере оценить весь блеск открытия Закона всемирного тяготения, вернемся к его предыстории. Существует легенда, что гуляя по яблоневому саду в поместье своих родителей, Ньютон увидел луну в дневном небе, и тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите – сила тяготения, которая существует между всеми телами.

Итак, когда великие предшественники Ньютона изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы - существующее только недалеко от поверхности нашей планеты. Когда другие ученые, изучая движение небесных тел, полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле.

Сама идея всеобщей силы тяготения неоднократно высказывалась и ранее: о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие. Декарт считал его результатом вихрей в эфире. История науки свидетельствует, что практически все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность - суть идеальная геометрическая фигура.

Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах. Изучение движения планет и строения Солнечной системы и привело, в конечном итоге, к созданию теории гравитации – открытию закона всемирного тяготения.

Первая попытка создания модели Вселенной была предпринята Птолемеем (~140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды. Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника.

В начале XVII века на основе системы Коперника немецкий астроном И.Кеплер сформулировал три эмпирических закона движения планет Солнечной системы, используя результаты наблюдений за движением планет датского астронома Т.Браге.

Первый закон Кеплера (1609): «Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце».

Вытянутость эллипса зависит от скорости движения планеты; от расстояния, на котором находится планета от центра эллипса. Изменение скорости небесного тела приводит к превращению эллиптической орбиты в гиперболическую, двигаясь по которой можно покинуть пределы Солнечной системы.

На рис. 1 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.

Рисунок 1 - Эллиптическая орбита планеты массой

m <

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609): «Радиус-вектор планеты описывает в равные промежутки времени равные площади» (рис.2).

Рисунок 2 - Закон площадей – второй закон Кеплера

Второй закон Кеплера показывает равенство площадей, описываемых радиус–вектором небесного тела за равные промежутки времени. При этом скорость тела меняется в зависимости от расстояния до Земли (особенно хорошо это заметно, если тело движется по сильно вытянутой эллиптической орбите). Чем ближе тела к планете, тем скорость тела больше.

Третий закон Кеплера (1619): «Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит»:

или

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1%.

На рис.3 изображены две орбиты, одна из которых – круговая с радиусом R, а другая – эллиптическая с большой полуосью a. Третий закон утверждает, что если R=a, то периоды обращения тел по этим орбитам одинаковы.

Рисунок 3 - Круговая и эллиптическая орбиты

При R=a периоды обращения тел по этим орбитам одинаковы

Законы Кеплера, навсегда вошедшие в основу теоретической астрономии, получили объяснение в механике И.Ньютона, в частности в законе всемирного тяготения.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений; причину, определяющую эти общие для всех планет закономерности, Кеплеру найти не удалось. Законы Кеплера нуждались в теоретическом обосновании.

И только Ньютон сделал частный, но очень важный вывод: между центростремительным ускорением Луны и ускорением свободного падения на Земле должна существовать связь. Эту связь нужно было установить численно и проверить.

Именно этим соображения Ньютона и отличались от догадок других ученых. До Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

Два величайших ученых намного обогнавшие свое время, создали науку, которая называется небесной механикой, открыли законы движения небесных тел под действием сил тяготения, и даже если бы этим их достижения ограничились, они все равно бы вошли в пантеон великих мира сего.

Так случилось, что они не пересеклись во времени. Только через тринадцать лет после смерти Кеплера родился Ньютон. Оба они являлись сторонниками гелиоцентрической системы Коперника.

Много лет изучая движение Марса, Кеплер экспериментально открывает три закона движения планет, за пятьдесят с лишним лет до открытия Ньютоном закона всемирного тяготения. Еще не понимая, почему планеты движутся так, а не иначе. Это было гениальное предвидение.

Зато Ньютон именно законами Кеплера проверял свой закон тяготения. Все три закона Кеплера являются следствиями закона тяготения. И открыл его Ньютон. Результаты ньютоновских расчетов теперь называют законом всемирного тяготения Ньютона, который мы и рассмотрим в следующей главе.


2 Закон всемирного тяготения

2.1 Открытие Исаака Ньютона

Закон всемирного тяготения был открыт И.Ньютоном в 1682 году. По его гипотезе между всеми телами Вселенной действуют силы притяжения (гравитационные силы), направленные по линии, соединяющей центры масс (рис.4). У тела в виде однородного шара центр масс совпадает с центром шара.

Аристотель утверждал, что массивные предметы падают на землю быстрее лёгких.

Ньютон предположил, что Луну следует рассматривать как снаряд, который движется по искривленной траектории, поскольку на него действует земное тяготение. Поверхность Земли тоже искривлена, так что при достаточно быстром движении снаряда его искривленная траектория будет следовать за кривизной Земли, и он станет «падать» вокруг планеты. Если увеличить скорость снаряда, его траектория вокруг Земли вытянется в эллипс.

Галилей в начале XVII века показал, что все предметы падают «одинаково». И примерно в то же время Кеплер задумывался, что заставляет планеты двигаться по своим орбитам. Быть может, это магнетизм? Исаак Ньютон, работая над « », свел все эти движения к действию единой силы, называемой гравитацией, которая подчиняется простым универсальным законам.

Галилей экспериментально показал, что путь, пройденный телом, падающим под действием гравитации, пропорционален квадрату времени падения: шар, падающий в течение двух секунд, пройдет вчетверо больший путь, чем такой же предмет в течение одной секунды. Также Галилей показал, что скорость прямо пропорциональна времени падения, и вывел отсюда, что пушечное ядро летит по параболической траектории — одному из видов конических сечений, как и эллипсы, по которым, согласно Кеплеру, движутся планеты. Но откуда эта связь?

Когда в середине 1660-х годов Кембриджский университет закрылся на время Великой эпидемии чумы, Ньютон вернулся в семейную усадьбу и там сформулировал свой закон тяготения, хотя и держал его потом в тайне еще 20 лет. (Историю об упавшем яблоке никто не слыхал, пока восьмидесятилетний Ньютон не рассказал эту байку после большого званого ужина.)

Он предположил, что все предметы во Вселенной порождают гравитационную силу, притягивающую другие объекты (подобно тому, как яблоко притягивается к Земле), и эта самая сила гравитации определяет траектории, по которым движутся в космосе звезды, планеты и другие небесные тела.

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Закон обратных квадратов

Ньютон сумел рассчитать величину ускорения Луны под влиянием земной гравитации и нашел, что она в тысячи раз меньше, чем ускорение предметов (того же яблока) вблизи Земли. Как такое может быть, если они движутся под действием одной и той же силы?

Объяснение Ньютона состояло в том, что сила тяготения ослабевает с расстоянием. Объект на поверхности Земли в 60 раз ближе к центру планеты, чем Луна. Притяжение на орбите Луны составляет 1/3600, или 1/602, от того, что действует на яблоко. Таким образом, сила притяжения между двумя объектами — будь это Земля и яблоко, Земля и Луна или Солнце и комета — обратно пропорциональна квадрату разделяющего их расстояния. Удвойте расстояние, и сила уменьшится вчетверо, утройте его — сила станет меньше в девять раз и т. д. Сила также зависит от масс объектов — чем больше масса, тем сильнее гравитация.

Закон всемирного тяготения можно записать в виде формулы:
F = G(Mm/r 2).

Где: сила гравитации равна произведению большей массы M и меньшей массы m , деленному на квадрат расстояния между ними r 2 и помноженному на гравитационную постоянную, обозначаемую заглавной буквой G (строчная g обозначает вызванное тяготением ускорение).

Эта постоянная определяет притяжение между любыми двумя массами в любой точке Вселенной. В 1789 году ее использовали для вычисления массы Земли (6·1024 кг). Законы Ньютона замечательно предсказывают силы и движения в системе из двух объектов. Но при добавлении третьего всё значительно усложняется и приводит (спустя 300 лет) к математике хаоса.

Вы уже знаете, что между всеми телами действуют силы притяжения, называемые силами всемирного тяготения .

Их действие проявляется, например, в том, что тела падают на Землю, Луна вращается вокруг Земли, а планеты вращаются вокруг Солнца. Если бы силы тяготения исчезли, Земля улетела бы от Солнца (рис. 14.1).

Закон всемирного тяготения сформулировал во второй половине 17-го века Исаак Ньютон.
Две материальные точки массой m 1 и m 2 находящиеся на расстоянии R, притягиваются с силами, прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними . Модуль каждой силы

Коэффициент пропорциональности G называют гравитационной постоянной . (От латинского «гравитас» - тяжесть.) Измерения показали, что

G = 6,67 * 10 -11 Н * м 2 /кг 2 . (2)

Закон всемирного тяготения раскрывает еще одно важное свойство массы тела: она является мерой не только инертности тела, но и его гравитационных свойств.

1. Чему равны силы притяжения двух материальных точек массой 1 кг каждая, находящихся на расстоянии 1 м друг от друга? Во сколько раз эта сила больше или меньше веса комара, масса которого 2,5 мг?

Столь малое значение гравитационной постоянной объясняет, почему мы не замечаем гравитационного притяжения между окружающими нас предметами.

Силы тяготения заметно проявляют себя только тогда, когда хотя бы одно из взаимодействующих тел имеет огромную массу – например, является звездой или планетой.

3. Как изменится сила притяжения между двумя материальными точками, если расстояние между ними увеличить в 3 раза?

4. Две материальные точки массой m каждая притягиваются с силой F. С какой силой притягиваются материальные точки массой 2m и Зm, находящиеся на таком же расстоянии?

2. Движение планет вокруг Солнца

Расстояние от Солнца до любой планеты во много раз больше размеров Солнца и планеты. Поэтому при рассмотрении движения планет их можно считать материальными точками. Следовательно, сила притяжения планеты к Солнцу

где m – масса планеты, M С – масса Солнца, R – расстояние от Солнца до планеты.

Будем считать, что планета движется вокруг Солнца равномерно по окружности. Тогда скорость движения планеты можно найти, если учесть, что ускорение планеты a = v 2 /R обусловлено действием силы F притяжения Солнца и тем, что согласно второму закону Ньютона F = ma.

5. Докажите, что скорость планеты

чем больше радиус орбиты, тем меньше скорость планеты .

6. Радиус орбиты Сатурна примерно в 9 раз больше радиуса орбиты Земли. Найдите устно, чему примерно равна скорость Сатурна, если Земля движется по своей орбите со скоростью 30 км/с?

За время, равное одному периоду обращения T, планета, двигаясь со скоростью v, проходит путь, равный длине окружности радиуса R.

7. Докажите, что период обращения планеты

Из этой формулы следует, что чем больше радиус орбиты, тем больше период обращения планеты .

9. Докажите, что для всех планет Солнечной системы

Подсказка. Воспользуйтесь формулой (5).
Из формулы (6) следует, что для всех планет Солнечной системы отношение куба радиуса орбиты к квадрату периода обращения одинаково . Эту закономерность (ее называют третьим законом Кеплера) обнаружил немецкий ученый Иоганн Кеплер на основании результатов многолетних наблюдений датского астронома Тихо Браге.

3. Условия применимости формулы для закона всемирного тяготения

Ньютон доказал, что формулу

F = G(m 1 m 2 /R 2)

для силы притяжения двух материальных точек можно применять также:
– для однородных шаров и сфер (R – расстояние между центрами шаров или сфер, рис. 14.2, а);

– для однородного шара (сферы) и материальной точки (R – расстояние от центра шара (сферы) до материальной точки, рис. 14.2, б).

4. Сила тяжести и закон всемирного тяготения

Второе из приведенных выше условий означает, что по формуле (1) можно найти силу притяжения тела любой формы к однородному шару, который намного больше этого тела. Поэтому по формуле (1) можно рассчитать силу притяжения к Земле тела, находящегося на ее поверхности (рис. 14.3, а). Мы получим выражение для силы тяжести:

(Земля не является однородным шаром, но ее можно считать сферически симметричной. Этого достаточно для возможности применения формулы (1).)

10. Докажите, что вблизи поверхности Земли

Где M Зем – масса Земли, R Зем – ее радиус.
Подсказка. Используйте формулу (7) и то, что F т = mg.

Пользуясь формулой (1), можно найти ускорение свободного падения на высоте h над поверхностью Земли (рис. 14.3, б).

11. Докажите, что

12. Чему равно ускорение свободного падения на высоте над поверхностью Земли, равной ее радиусу?

13. Во сколько раз ускорение свободного падения на поверхности Луны меньше, чем на поверхности Земли?
Подсказка. Воспользуйтесь формулой (8), в которой массу и радиус Земли замените на массу и радиус Луны.

14. Радиус звезды белый карлик может быть равен радиусу Земли, а ее масса – равной массе Солнца. Чему равен вес килограммовой гири на поверхности такого «карлика»?

5. Первая космическая скорость

Представим себе, что на очень высокой горе установили огромную пушку и стреляют из нее в горизонтальном направлении (рис. 14.4).

Чем больше начальная скорость снаряда, тем дальше он упадет. Он не упадет вообще, если подобрать его начальную скорость так, чтобы он двигался вокруг Земли по окружности. Летя по круговой орбите, снаряд станет тогда искусственным спутником Земли.

Пусть наш снаряд-спутник движется по низкой околоземной орбите (так называют орбиту, радиус которой можно принять равным радиусу Земли R Зем).
При равномерном движении по окружности спутник движется с центростремительным ускорением a = v2/RЗем, где v – скорость спутника. Это ускорение обусловлено действием силы тяжести. Следовательно, спутник движется с ускорением свободного падения, направленным к центру Земли (рис. 14.4). Поэтому a = g.

15. Докажите, что при движении по низкой околоземной орбите скорость спутника

Подсказка. Воспользуйтесь формулой a = v 2 /r для центростремительного ускорения и тем, что при движении по орбите радиуса R Зем ускорение спутника равно ускорению свободного падения.

Скорость v 1 , которую необходимо сообщить телу, чтобы оно двигалось под действием силы тяжести по круговой орбите вблизи поверхности Земли, называют первой космической скоростью. Она примерно равна 8 км/с.

16. Выразите первую космическую скорость через гравитационную постоянную, массу и радиус Земли.

Подсказка. В формуле, полученной при выполнении предыдущего задания, замените массу и радиус Земли на массу и радиус Луны.

Чтобы тело навсегда покинуло окрестности Земли, ему надо сообщить скорость, равную примерно 11,2 км/с. Ее называют второй космической скоростью.

6. Как измерили гравитационную постоянную

Если считать известными ускорение свободного падения g вблизи поверхности Земли, массу и радиус Земли, то значение гравитационной постоянной G можно легко определить с помощью формулы (7). Проблема, однако, в том, что до конца 18-го века массу Земли измерить не удавалось.

Поэтому, чтобы найти значение гравитационной постоянной G, надо было измерить силу притяжения двух тел известной массы, находящихся на определенном расстоянии друг от друга. В конце 18-го века такой опыт смог поставить английский ученый Генри Кавендиш.

Он подвесил на тонкой упругой нити легкий горизонтальный стержень с небольшими металлическими шарами a и b и по углу поворота нити измерил силы притяжения, действующие на эти шары со стороны больших металлических шаров А и В (рис. 14.5). Малые углы поворота нити ученый измерял по смещению «зайчика» от прикрепленного к нити зеркальца.

Этот опыт Кавендиша образно назвали «взвешиванием Земли», потому что этот опыт впервые позволил измерить массу Земли.

18. Выразите массу Земли через G, g и R Зем.


Дополнительные вопросы и задания

19. Два корабля массой 6000 т каждый притягиваются с силами по 2 мН. Каково расстояние между кораблями?

20. С какой силой Солнце притягивает Землю?

21. С какой силой человек массой 60 кг притягивает Солнце?

22. Чему равно ускорение свободного падения на расстоянии от поверхности Земли, равном ее диаметру?

23. Во сколько раз ускорение Луны, обусловленное притяжением Земли, меньше ускорения свободного падения на поверхности Земли?

24. Ускорение свободного падения на поверхности Марса в 2,65 раз меньше ускорения свободного падения на поверхности Земли. Радиус Марса приближенно равен 3400 км. Во сколько раз масса Марса меньше массы Земли?

25. Чему равен период обращения искусственного спутника Земли на низкой околоземной орбите?

26. Чему равна первая космическая скорость для Марса? Масса Марса 6,4 * 10 23 кг, а радиус 3400 км.



Включайся в дискуссию
Читайте также
Ангелы Апокалипсиса – вострубившие в трубы
Фаршированные макароны «ракушки
Как сделать бисквит сочным Творожные кексы с вишней