Подпишись и читай
самые интересные
статьи первым!

Какие авто больше подвержены коррозии? Защита металла от коррозии.

Какие авто больше подвержены коррозии?

Все автомобили подвержены «рыжей чуме», кто-то в меньшей степени, а кто-то в большей, а некоторые, как оказалось, особенно. И Беларуси в этом плане не сильно повезло с климатом - у нас даже самые нержавеющие автомобили подвергаются коррозии и владельцы автомобилей либо "лечат" авто, либо предпринимают превентивные меры. AUTO.TUT.BY решил выяснить, правда ли, что «фольксвагены не ржавеют», а «внедорожники „тойота“ неубиваемые».

Японская автомобильная компания Toyota Motor Corp. недавно заявила, что выплатит компенсацию в размере 3,4 млрд долларов США владельцам автомобилей ряда моделей, которые подвержены коррозии, угрожающей прочности конструкции. Как передает Reuters, это касается в первую очередь Toyota Tacoma 2005−2010 годов выпуска, модели Tundra 2005−2008 года, а также внедорожников Sequoia, произведенных с 2007 по 2008 год.

А как обстоят дела с этими да и другими марками авто у нас, учитывая то, что в Беларуси не самый благоприятный климат? Чтобы выяснить это, AUTO.TUT.BY встретился с Сергеем Мухлаевым, директором специализированного центра антикоррозийной обработки, и составил свой рейтинг тех автомобилей, владельцы которых чаще всего в силу разных причин обращаются в центр. Обращаются они по двум причинам: превентивная мера либо обработка от коррозии.

Наш рейтинг не претендует на абсолютно объективный и сформирован на основании количества обращений на СТО для антикоррозийной обработки. Возможно, эти данные свидетельствуют о том, что владельцы авто в силу особенностей белорусского климата больше других заботятся о своих машинах и «предупреждают» возможные проблемы.


Сергей Мухлаев: Больше всего обращений у нас по внедорожникам Toyota. Но это не мешает мне быть поклонником марки и ездить на Land Cruiser 100

Наша компания имеет тесные связи с аналогичными авторизованными центрами в странах Балтии, так что для начала предлагаю посмотреть, как дело обстоит там. У них в силу большей развитости рынка статистика обращений куда больше. Центры в Прибалтике работают с 2010 года, а в общей базе порядка 15 000 клиентов.

Так вот, что касается стран Прибалтики, то ситуация там следующая: в Латвии и Эстонии на первом месте по обращениям - марка Mazda, а в Литве - Toyota, - рассказывает Сергей.


Легковые модели Toyota даже в возрасте старше пяти лет не пугают «рыжей чумой»

Что касается японских марок, то в разных странах происходит небольшое смещение в сторону того или иного бренда, но состав участников не меняется. Такие перестановки связаны, скорее всего, с некоторыми особенностями рынка в плане популярности той или иной марки. Но вот пятое место VW характерно для всех четырех стран, - говорит Сергей.

«Французы» не вошли в список ни в одной стране. Это касается как машин российской сборки, так и французской.

Что же касается Беларуси, то, по словам Сергея, у нас тоже накопился достаточный опыт, чтобы составить рейтинг автомобилей, владельцы которых чаще всего обращаются за услугами по антикоррозийному покрытию в силу заботы о своем автомобиле.

Топ-5 самых ржавеющих марок в Беларуси

1-е место - Toyota


Десятилетняя Toyota Land Cruiser 100 снизу выглядит удручающе

В рейтинг входят почти все внедорожники этой марки, так что претензии американских потребителей и белорусских в этом плане полностью совпадают. Модели Land Cruiser 100, 150, 200 имеют одну общую проблему - ржавеющая рама. Первыми сдаются сварные швы, причем уже в первый год эксплуатации, а дальше ржавчина распространяется по всей раме.


Сварные швы на раме годовалого Lexus LX450 уже имеют следы ржавчины

Эти болячки можно в равной степени отнести и к «идентичным» внедорожникам Lexus. Все сварные швы покрываются ржой уже в первый год. Потом ржавчина «грызет» все подвесное оборудование под днищем кузова. Например, в «100-ке» сгнивает блок управления активной подвеской.

А вот, например, кроссовер Lexus RX проблем с коррозией не имеет, равно как и все легковые модели Toyota и Lexus.

2-е место - VW


Среди моделей VW специалисты особо отмечают модель Touran - в некоторых местах краска облущивается большими кусками

Наибольшее количество обращений приходится на модель Touran, затем следует Passat. У Touran самое слабое место - пороги, низ дверей, задние лонжероны. Причем VW не ржавеет снаружи. У него с элементов кузова облущивается краска, обнажая оцинкованные места.

3-е место - Nissan

У этого японского бренда самым проблемным является внедорожник Patrol. Как и у Toyota, ржавчина чаще всего поражает раму.


Нельзя сказать, что Nissan сильно ржавеют, но их владельцы часто делают «антикор»

Кроме того, много обращений от владельцев новых бюджетных автомобилей, недорогих кроссоверов. Но это связано больше с желанием владельцев превентивно защитить машины от последствий эксплуатации в наших условиях.

4-е место - Mazda

Нельзя выделить какие-то сильные и слабые модели. Одинаково подвержены коррозии даже относительно свежие машины.


Задние арки, двери, пороги изъедены ржавчиной. Довести до такого состояния Mazda 6 - не проблема

Откровенное слабые места - пороги, двери, крылья, крышка багажника. Особо страдают ниши за задними колесными арками. Там постоянно скапливается конденсат, а дренажных отверстий нет. Поэтому, как бы ни был хорош металл, он не выдерживает длительного контакта с водой. Не для нашей Беларуси с суровым климатом машина, а жаль.

Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.

Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.

Сегодня вы узнаете

Есть ли надежда?

Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белому свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего конструкционного материала.

Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.

Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.

К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой прок от таких «консервированных» деталей? Металл должен «работать». Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.

В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.

Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Значит, не все так безнадежно.

Что такое коррозия?

Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:

Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.

Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.

Коррозия и ржавчина — не одно и то же

В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько отождествляют с термином «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.

Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», мы подразумеваем, что ржавеет железо в ее составе.

Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.

Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.

Патина — продукт коррозии меди и ее сплавов

Механизм протекания коррозионных процессов

Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую и всеобъемлющую классификацию встречающихся случаев коррозии. Но не смотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.

Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).

Например, в реакции…

… атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).

Частицы, которые отдают электроны и окисляются, называются восстановителями , а частицы, которые принимают электроны и восстанавливаются, называются окислителями . Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.

Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.

Естественно, склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».

Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.

К ряду активности вернемся немного позднее, а сейчас поговорим об основных видах коррозии.

Виды коррозии

Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого коварного процесса, является классификация по механизму протекания.

По этому критерию различают два вида коррозии:

  • химическую
  • электрохимическую

Химическая коррозия

Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

Электрохимическая коррозия

Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит .

В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

Смотрим. Cлева расположены более активные металлы, справа — менее активные.

Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

Схема гальванического элемента

Для наглядности рассмотрим несколько простых примеров.

Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

Стальной болт — медная гайка (корродирует сталь)

А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.

Олово и цинк. «Опасные» и «безопасные покрытия

Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.

А коль уж такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.

На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.

Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.

А вот с цинком картина совсем иная. Здесь, по сути, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.

а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.

Покрытия, выполненные из более активных металлов называются «безопасными », а из менее активных - «опасными ». Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.

Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного) . А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.

Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.

Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.

Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.

Ведь, чего греха таить, гальванических пар в автомобильном кузове воз и маленькая тележка: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.

А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.

Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.

Факторы, влияющие на коррозию автомобильного кузова

Металл: химический состав и структура

Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.

Впрочем, не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных элементов. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.

Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.

Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.

В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.

Она стоит уже 1600 (!) лет, и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.

Так что в рассуждениях на манер «раньше металл был чище и кузов долго не ржавел», все-таки есть доля правды, и немалая.

Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.

Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.

Заводские кузовные технологии

Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.

Особенностью процесса штамповки кузовных панелей, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.

В противном случае в кузовную панель закладывается этакая «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.

Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.

Влияние окружающей среды при эксплуатации

Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.

Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.

Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.

Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:

  • в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
  • для города эти цифры составляют 30 и 5 мкм в год соответственно.

Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.

Влажность и температура

Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).

Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.

Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.

Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.

Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.

Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.

Доступ воздуха

Интересная все-таки вещь эта коррозия. Насколько интересна, настолько же и коварна. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.

Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.

Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.

Кстати, гидроксид железа (Fe 2 O 3 ·nH 2 O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.

Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.

Возвращаясь к принципу дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.

Ржавеют… все!

Как говорится, статистика знает все. Ранее мы упоминали о таком известном центре борьбы с коррозией, как Шведский институт коррозии (ШИК) — одной из наиболее авторитетных организаций в данной области.

Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее полюбившиеся коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.

Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).

Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.

Оцинковка — не панацея

Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.

Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.

К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.

Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.

Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общего барьера, дополнением к регулярной дополнительной антикоррозионной обработке кузова.

Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».

Известно, что большинство металлов содержится в рудах не в чистом виде, а в различных химических соединениях. Поэтому, чтобы извлечь металлы из этих соединений, приходится задействовать непростые и энергозатратные металлургические операции.

И все же немалую часть результатов этих процессов отнимает у нас коррозия – главный враг металла.

Что такое коррозия

Коррозия – это распад и уничтожение металлов под воздействием окружающей среды. Когда происходит коррозия – металлы снова возвращаются в положение химических соединений, похожих на те, в которых они находятся в рудах.

Коррозия приносит огромные убытки, ее разрушительное действие мы видим во всем, что нас окружает, из-за коррозии выходят из строя машины, механизмы, различное оборудование. Предохранение от коррозии и ее предупреждение – довольно трудоемкие и затратные мероприятия.

Коррозия различается по видам, но обычно она начинается на поверхности металла и затем проходит внутрь. Различные металлы реагируют на коррозию по-разному: одни поддаются ее разрушительному действию быстрее, другие медленнее, но не существует металла, обладающего полной защитой от коррозии. Такие благородные металлы, как платина, золото и другие, также подвержены разрушению при некоторых условиях. Например, они растворяются при погружении в раствор соляной и серной кислоты, известный как «царская водка».

Виды коррозии.

1. Химическая коррозия. В том случае, когда на металл оказывают воздействие газы – это и есть химическая коррозия. Например: следы ее заметны на серебряных предметах, которые со временем покрываются темным налетом. Это происходит вследствие, вступления в химическую реакцию с серебром, соединений серы, которые находятся в воздухе, и сульфид серебра, образующийся при этой реакции, откладывается на верхнем слое серебряных предметов.

Еще один пример такого вида коррозии – окалина, возникающая на железе, когда оно нагрето в воздухе. Это воздействие мы можем видеть во время ковки или прокатки. При этих процессах, возникают тонкие пленки или окислы, которыми покрываются металлы. Эти тонкие, но прочные пленки взаимодействуют с металлом, на котором они образуются, и предохраняют его от воздействия коррозии. При этом на некоторых других металлах корка возникает не такая прочная, и коррозия проходит внутрь металла. В наше время существует много способов увеличения действия защиты окисного слоя, они связаны внешней обработкой материалов.

2. Электрохимическая коррозия. Это — наиболее распространенный и вредоносный вид коррозии. Такая коррозия опасна и непредсказуема. Она может возникнуть в одном куске металла, который состоит из различных соединений. При этом на поверхности материала возникают различные гальванические структуры, а вода от дождя, росы, пара является электролитом.

Для возникновения коррозии благоприятны изменения температуры, так как они способствуют образованию влаги. Из-за резкой смены ночных и дневных температур опасность возникновения коррозии особенно велика в странах с субтропическим климатом. Еще одним фактором возникновения коррозии является сильное загрязнение окружающей среды пылью и газами, особенно в местах скопления промышленных объектов. В случае, когда коррозия проходит постепенно, ее еще можно контролировать, но она крайне опасна при локализации в частях деталей или материалов и здесь можно говорить о сквозной коррозии, возникающей в растворах, включающих в себя различные хлориды.

Возникает коррозия также под влиянием различных механических нагрузок, разрушая металл под действием напряжения. В этом случае на поверхности изделий образуются трещины, уходящие далее в тело материала. Этому виду коррозии подвержены многие металлы и сплавы, находящиеся в различных средах.

Защита от коррозии.

Для предотвращения коррозии или уменьшения ее действия необходимы огромные усилия и финансовые вложения. Одним из способов защиты является покрытие металлических изделий лакокрасочными материалами. Очевидно – лаки и краски защищают металл от воздействия окружающей среды и других металлов, но это средство не долговечно, так как краска постепенно уничтожается, что требует нового покрытия. Но пока это – один из самых распространенных способов защиты огнезащита металлических конструкций от коррозии. Существуют еще несколько методов защиты. Например, погружение изделия в расплав металла, когда на поверхности изделия образуется защитная пленка. Этот метод включает в себя плакирование, металлизацию и некоторые другие.

Гальванический способ защиты металлов также имеет широкое распространение. С помощью этого процесса многие предметы, изделия и механизмы эффективно защищаются от воздействия коррозии. Некоторые детали автомобиля, серебряная посуда и многое другое обрабатывается гальваническим способом.

Коррозия металлических материалов наносит значительный урон промышленности, требует огромных затрат на ее предупреждение и устранение. Но различные методы борьбы с коррозией, изложенные выше, помогают защитить и по возможности предупредить последствия этого разрушительного явления.

– физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»).

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

В результате коррозии железо ржавеет. Этот процесс очень сложен и включает несколько стадий. Его можно описать суммарным уравнением:

Fe + 6 H 2 O (влага) + 3 O 2 (воздух) = 4 Fe (OH ) 3

Гидроксид железа(

III ) очень неустойчив, быстро теряет воду и превращается в оксид железа(III ). Это соединение не защищает поверхность железа от дальнейшего окисления. В результате железный предмет может быть полностью разрушен.

Многие металлы, в том числе и довольно активные (например, алюминий) при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.

Алюминий в обычных условиях устойчив к воздействию воздуха и воды, даже кипящей, однако если на поверхность алюминия нанести ртуть, то образующаяся амальгама разрушает оксидную пленку – выталкивает ее с поверхности, и металл быстро превращается в белые хлопья метагидроксида алюминия:

4Al + 2H 2 O + 3O 2 = 4AlO(OH) Амальгамированный алюминий взаимодействует с водой с выделением водорода: Al + 4 H 2 O = 2 AlO (OH ) + 3 H 2

Коррозии подвергаются и некоторые довольно мало активные металлы. Во влажном воздухе поверхность меди покрывается зеленоватым налетом (патиной) в результате образования смеси основных солей.

Иногда при коррозии металлов происходит не окисление, а восстановление некоторых элементов, содержащихся в сплавах. Например, при высоких давлениях и температурах карбиды, содержащиеся в сталях, восстанавливаются водородом.

Разрушение металлов в присутствии водорода обнаружили в середине девятнадцатого века. Французский инженер Сент Клэр Девиль изучал причины неожиданных разрывов орудийных стволов. При их химическом анализе он нашел в металле водород. Девиль решил, что именно водородное насыщение явилось причиной внезапного падения прочности стали.

Много хлопот доставил водород конструкторам оборудования для одного из важнейших промышленных химических процессов – синтеза аммиака. Первые аппараты для этого синтеза служили лишь десятки часов, а затем разлетались на мелкие части. Только добавление в сталь титана, ванадия или молибдена помогло решить эту проблему.

К коррозии металлов можно отнести также их растворение в жидких расплавленных металлах (натрий, свинец, висмут), которые используются, в частности, в качестве теплоносителей в ядерных реакторах.

По стехиометрии реакции, описывающие коррозию металлов, довольно просты, однако по механизму они относятся к сложным гетерогенным процессам. Механизм коррозии определяется, прежде всего, типом агрессивной среды.

При контакте металлического материала с химически активным газом на его поверхности появляется пленка продуктов реакции. Она препятствует дальнейшему контакту металла и газа. Если сквозь эту пленку происходит встречная диффузия реагирующих веществ, то реакция продолжается. Процесс облегчается при высоких температурах. В ходе коррозии пленка продукта непрерывно утолщается, а металл разрушается. Большие убытки от газовой коррозии терпит металлургия и другие отрасли промышленности, где используются высокие температуры.

Наиболее распространена коррозия в средах электролитов. В некоторых технологических процессах металлы контактируют с расплавами электролитов. Однако чаще всего коррозия протекает в растворах электролитов. Металл не обязательно должен быть полностью погружен в жидкость. Растворы электролитов могут находиться в виде тонкой пленки на поверхности металла. Они нередко пропитывают окружающую металл среду (почву, бетон и др.).

Во время строительства метромоста и станции «Ленинские горы» в Москве в бетон добавляли большое количество хлорида натрия, чтобы не допустить замерзания еще не схватившегося бетона. Станция была сооружена в кратчайшие сроки (всего за 15 месяцев) и открыта 12 января 1959. Однако присутствие хлорида натрия в бетоне вызвало разрушение стальной арматуры. Коррозии оказались подвергнуты 60% железобетонных конструкций, поэтому станция была закрыта на реконструкцию, продолжавшуюся почти 10 лет. Лишь 14 января 2002 состоялось повторное открытие метромоста и станции, получившей название «Воробьевы горы».

Использование солей (обычно хлорида натрия или кальция) для удаления снега и льда с дорог и тротуаров также приводит к ускоренному разрушению металлов. Сильно страдают транспортные средства и подземные коммуникации. Подсчитано, что только в США применение солей для борьбы со снегопадами и гололедом приводит к потерям на сумму около 2 млрд. долл. в год в связи с коррозией двигателей и 0,5 млрд. долл. на дополнительный ремонт дорог, подземных магистралей и мостов.

В средах электролитов коррозия обусловлена не только действием кислорода, воды или кислот на металлы, но и электрохимическими процессами. Уже в начале 19 в. электрохимическую коррозию изучали английские ученые Гемфри Дэви и Майкл Фарадей. Первая теория электрохимической коррозии была выдвинута в 1830 швейцарским ученым Де ла Ривом. Она объясняла возникновение коррозии в месте контакта двух разных металлов.

Электрохимическая коррозия приводит к быстрому разрушению более активных металлов, которые в различных механизмах и устройствах контактируют с менее активными металлами, расположенными в электрохимическом ряду напряжений правее. Использование медных или латунных деталей в железных или алюминиевых конструкциях, которые работают в морской воде, существенно усиливает коррозию. Известны случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками.

По отдельности алюминий и титан устойчивы к действию морской воды, но если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает.

Электрохимические процессы могут протекать и в однородном металле. Они активизируются, если есть различия в составе зерна металла в объеме и на границе, неоднородное механическое напряжение, микропримеси и т.д. В разработке общей теории электрохимической коррозии металлических материалов участвовали многие наши соотечественники, в том числе Владимир Александрович Кистяковский (1865–1952) и Александр Наумович Фрумкин (1895–1976).

Одной из причин возникновения электрохимической коррозии являются блуждающие токи, которые появляются вследствие утечки части тока из электрических цепей в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду начинается растворение металла. Такие зоны разрушения металлов под действием блуждающих токов особенно часто наблюдаются в районах наземного электрического транспорта (трамвайные линии, железнодорожный транспорт на электрической тяге). Эти токи могут достигать несколько ампер, что приводит к большим коррозионным разрушениям. Например, прохождение тока силой в 1 А в течение одного года вызовет растворение 9,1 кг железа, 10,7 кг цинка, 33,4 кг свинца.

Коррозия может возникать и под влиянием радиационного излучения, а также продуктов жизнедеятельности бактерий и других организмов. С развитием бактерий на поверхности металлических конструкций связано явление биокоррозии. Обрастание подводной части судов мелкими морскими организмами также оказывает влияние на коррозионные процессы.

При одновременном воздействии на металл внешней среды и механических напряжений все коррозионные процессы активизируются, поскольку при этом понижается термическая устойчивость металла, нарушаются оксидные пленки на поверхности металла, усиливаются электрохимические процессы в местах появления трещин и неоднородностей.

Коррозия приводит к огромным безвозвратным потерям металлов, ежегодно полностью разрушается около 10% производимого железа. По данным Института физической химии РАН, каждая шестая домна в России работает впустую – весь выплавляемый металл превращается в ржавчину. Разрушение металлических конструкций, сельскохозяйственных и транспортных машин, промышленной аппаратуры становится причиной простоев, аварий, ухудшения качества продукции. Учет возможной коррозии приводит к повышенным затратам металла при изготовлении аппаратов высокого давления, паровых котлов, металлических контейнеров для токсичных и радиоактивных веществ и т.д. Это увеличивает общие убытки от коррозии. Немалые средства приходится тратить на противокоррозионную защиту. Соотношение прямых убытков, косвенных убытков и расходов на защиту от коррозии оценивают как (3–4):1:1. В промышленно развитых странах ущерб от коррозии достигает 4% национального дохода. В нашей стране он исчисляется миллиардами рублей в год.

Проблемы коррозии постоянно обостряются из-за непрерывного роста производства металлов и ужесточения условий их эксплуатации. Среда, в которой используются металлические конструкции, становится все более агрессивной, в том числе и за счет ее загрязнения. Металлические изделия, используемые в технике, работают в условиях все более высоких температур и давлений, мощных потоков газов и жидкостей. Поэтому вопросы защиты металлических материалов от коррозии становятся все более актуальными. Полностью предотвратить коррозию металлов невозможно, поэтому единственным путем борьбы с ней является поиск способов ее замедления.

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (5 в. до н. э.) и древнеримского ученого Плиния Старшего (1 в. до н. э.) уже есть упоминания о применении олова для предохранения железа от ржавления. В настоящее время борьбу с коррозией ведут сразу в нескольких направлениях – пытаются изменить среду, в которой работает металлическое изделие, повлиять на коррозионную устойчивость самого материала, предотвратить контакт между металлом и агрессивными веществами внешней среды.

Полностью предотвратить коррозию можно только в инертной среде, например в атмосфере аргона, однако реально создать такую среду при эксплуатации конструкций и механизмов в подавляющем большинстве случаев невозможно. На практике для снижения коррозионной активности среды из нее стараются удалить наиболее реакционноспособные компоненты, например, снижают кислотность водных растворов и почв, с которыми могут контактировать металлы. Одним из методов борьбы с коррозией железа и его сплавов, меди, латуни, цинка, свинца является удаление из водных растворов кислорода и диоксида углерода. В энергетике и некоторых отраслях техники воду освобождают также от хлоридов, которые стимулируют локальную коррозию. Для снижения кислотности почвы проводят известкование.

Агрессивность атмосферы сильно зависит от влажности. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии. Для железа, меди, никеля, цинка она составляет 50–70%. Иногда для сохранности изделий, имеющих историческую ценность, их температуру искусственно поддерживают выше точки росы. В закрытых пространствах (например, в упаковочных коробках) влажность понижают с помощью силикагеля или других адсорбентов. Агрессивность промышленной атмосферы определяется, в основном продуктами сгорания топлива (см . ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ ). Уменьшению потерь от коррозии способствует предотвращение кислотных дождей и устранение вредных газовых выбросов.

Разрушение металлов в водных средах можно замедлить при помощи ингибиторов коррозии, которые в небольших количествах (обычно менее 1%) вводят в водные растворы. Они способствуют пассивированию поверхности металла, то есть образованию тонкой и плотной пленки оксидов или других малорастворимых соединений, которая препятствует разрушению основного вещества. Для этой цели применяют некоторые соли натрия (карбонат, силикат, борат) и другие соединения. Если бритвенные лезвия погрузить в раствор хромата калия, они хранятся намного дольше. Часто используют органические ингибиторы, которые более эффективны, чем неорганические.

Один из способов защиты от коррозии основывается на разработке новых материалов, обладающих более высокой коррозионной стойкостью. Постоянно ведутся поиски заменителей коррозирующих металлов. Пластмассы, керамика, стекло, резина, асбест и бетон более устойчивы к воздействию окружающей среды, однако по многим другим свойствам они уступают металлам, которые по-прежнему служат основными конструкционными материалами.

Благородные металлы практически не поддаются коррозии, но для широкого применения они слишком дороги, поэтому их используют лишь в наиболее ответственных деталях, например для изготовления некорродирующих электрических контактов. Высокой коррозионной стойкостью обладают никель, алюминий, медь, титан и сплавы на их основе. Их производство растет довольно быстро, однако и сейчас наиболее доступным и широко используемым металлом остается быстро ржавеющее железо. Для придания коррозионной стойкости сплавам на основе железа часто используют легирование. Так получают нержавеющую сталь, которая, помимо железа, содержит хром и никель. Самая распространенная в наше время нержавеющая сталь марки 18–8 (18% хрома и 8% никеля) появилась в 1923. Она вполне устойчива к воздействию влаги и кислорода. Первые тонны нержавеющей стали в нашей стране были выплавлены в 1924 в Златоусте. Сейчас разработано много марок таких сталей, которые, помимо хрома и никеля, содержат марганец, молибден, вольфрам и другие химические элементы. Часто применяют поверхностное легирование недорогих железных сплавов цинком, алюминием, хромом.

Для противостояния атмосферной коррозии на стальные изделия наносятся тонкие покрытия из других металлов, более устойчивых к воздействию влаги и кислорода воздуха. Часто используются покрытия из хрома и никеля. Поскольку хромовые покрытия нередко содержат трещины, их обычно наносят поверх менее декоративных никелевых покрытий. На защиту жестяных консервных банок от коррозии в органических кислотах, содержащихся в пищевых продуктах, расходуется значительное количество олова. Долгое время для покрытия кухонной утвари использовали кадмий, однако теперь известно, что этот металл опасен для здоровья и кадмиевые покрытия используются только в технике.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена. Внутренние поверхности стальных труб и резервуаров защищают дешевыми покрытиями из цемента.

Чтобы лакокрасочное покрытие было более надежным, поверхность металла тщательно очищают от грязи и продуктов коррозии и подвергают специальной обработке. Для стальных изделий используют так называемые преобразователи ржавчины, содержащие ортофосфорную кислоту (Н 3 РО 4) и ее соли. Они растворяют остатки оксидов и формируют плотную и прочную пленку фосфатов, которая способна на некоторое время защитить поверхность изделия. Затем металл покрывают грунтовочным слоем, который должен хорошо ложиться на поверхность и обладать защитными свойствами (обычно используют свинцовый сурик или хромат цинка). Только после этого можно наносить лак или краску.

Одним из наиболее эффективных методов борьбы с коррозией является электрохимическая защита. Для защиты буровых платформ, сварных металлических оснований, подземных трубопроводов их подключают в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды.

Другой вариант такой защиты применяют для сравнительно небольших стальных конструкций или дополнительно покрытых изоляцией металлических объектов (например, трубопроводов). В этом случае используют протектор – анод из сравнительно активного металла (обычно это магний, цинк, алюминий и их сплавы), который постепенно разрушается, оберегая основной объект. С помощью одного магниевого анода защищают до 8 км трубопровода. Протекторная защита широко распространена; например, в США на производство протекторов ежегодно расходуется около 11,5 тыс. т алюминия.

Защита одного металла другим, более активным металлом, расположенным в ряду напряжений левее, эффективна и без наложения разности потенциалов. Более активный металл (например, цинк на поверхности железа) защищает от разрушения менее активный металл.

К электрохимическим методам борьбы с коррозией можно отнести и защиту от разрушения конструкций блуждающими токами. Одним из способов устранения такой коррозии является соединение металлическим проводником участка конструкции, с которого стекает блуждающий ток, с рельсом, по которому движется трамвай или электропоезд.

Елена Савинкина

ЛИТЕРАТУРА Фримантл М. Химия в действии . В 2-х ч. М., Мир, 1991
Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения . М., Химия, 1994

Коррозии поддаются многие материалы, например металлические, керамические, деревянные, в результате воздействия на них. Как правило, такой эффект достигается из-за неустойчивости конструкции, на которую воздействует термодинамика окружающей среды. В статье подробно разберемся, что такое коррозия металла, какие она имеет виды, а также как можно от нее защититься.

Немного общих сведений

В народе довольно популярным является слово "ржавчина", которое относится к процессу коррозии металла и различных сплавов. К полимерам люди используют понятия “старение”. По факту эти слова являются синонимами. Ярким примером можно назвать старение резиновых продуктов, которые активно взаимодействуют с кислородом. Некоторые пластиковые изделия из-за осадков могут быстро приходить в негодность. То, насколько быстро будет происходить процесс коррозии, полностью зависит от условий, в которые помещено изделие. Особенно влияет влажность окружающей среды. Чем больше ее показатель, тем быстрее металл станет непригодным к использованию. Опытным путем учеными было установлено, что около 10 % изделий на производстве просто списывается из-за коррозии. Виды данного процесса различные, их классификация зависит от типа среды, в которой изделия находятся, скорости и характера протекания. Далее рассмотрим более подробно типы коррозии. Теперь каждый человек должен понимать, что такое коррозия металла.

Искусственное старение

Процесс коррозии не всегда имеет разрушительное влияние и приводит в негодность определенные материалы. Нередко из-за коррозии у покрытия появляются дополнительные свойства, необходимые человеку. Именно поэтому популярным стало искусственное старение. Чаще всего его применяют, если речь идет об алюминии и титане. Только при помощи коррозии можно добиться повышенной прочности материалов. Для того чтобы завершить процесс разрушения правильно, необходимо использовать термическую обработку. Учитывая, что естественное старение материалов в некоторых условиях довольно медленный процесс, то не нужно уточнять, что при использовании этого метода материал должен иметь специальную закалку. Нужно также понимать все риски, которые связаны с данным методом. Например, хотя и прочность материала повышается, но пластичность максимально уменьшается. С легкостью теперь читатель сможет ответить на вопрос о том, что такое коррозия металла искусственного типа.

Отзывы о термической обработке

Данный метод уплотняет молекулы материала, соответственно, меняется структура. Нередко термическая защита необходима для укрепления трубопроводов, так как она позволяет уберечь материал от ржавчины, а также минимизировать давление, которое оказывается на конструкцию, если оно находится под землей. Пользователи этой методики оставляют отзывы, в которых описывают, что данный метод защиты максимально эффективен и действительно показывает хорошие результаты. Такую обработку желательно применять только в промышленной сфере. Из-за того что камеры для обжига и совершения других процессов, необходимые для получения надежной защиты, стоят дорого, метод популярностью не пользуются. Такая защита металла от коррозии довольно эффективна.

Классификация

На данный момент существует более 20 вариантов ржавения. В статье будут описаны только наиболее популярные виды коррозии. Условно они делятся на следующие группы, которые помогут понять подробнее, что такое коррозия металла.

Химическая коррозия - это взаимодействие с коррозионной средой. При этом окисление металла и восстановление окислителя происходит одновременно в одном цикле. Оба материала не разделяются при помощи пространства. Рассмотрим другие виды коррозии металлов.

Электрохимическая коррозия - это взаимодействие металла с электролитом. Атомы ионизируются, окислитель восстанавливается, а эти два процесса происходит за несколько циклов. Их скорость полностью зависит от потенциала электродов.

При газовой коррозии происходит ржавление металла с небольшим содержанием жидкости. Влага не должна превышать 0,1 %. Также данный вид коррозии может происходить в газовой среде при высоких температурах. Наиболее чаще этот вид встречается в промышленности, связанной с химической сферой и нефтеперерабатывающей.

Помимо вышеописанных существует еще множество видов коррозии материалов. Имеются биологическое, целевое, контактное, местное и другие виды ржавения.

Электрохимическая коррозия и ее особенности

При электрохимической коррозии разрушение материала происходит из-за его прикосновения к электролиту. В качестве последнего вещества может быть конденсат, дождевая вода. Нужно заметить, что чем больше будет солей в жидкости, тем выше показатель электропроводности. Соответственно, процесс коррозии будет протекать довольно быстро. Если говорить о наиболее популярных местах, которые поддаются коррозии, нужно отметить заклепки в металлической конструкции, сварные соединения, а также просто места, в которых материал поврежден. Бывает так, что сплав железа при его создании покрыт специальными веществами, которые имеют антикоррозионные свойства. Однако это не предотвращает процесс ржавения, а лишь его замедляет. Довольно ярким примером можно назвать оцинковку. Цинк имеет отрицательный потенциал, если сравнивать с железом. Из-за этого последний материал будет восстанавливаться, а цинк повредится. Если на поверхности будет находиться оксидная пленка, то процесс разрушения станет длительным. Электрохимическая коррозия имеет несколько видов, но нужно отметить, что все они опасные и, как правило, остановить такой вид коррозии металлов невозможно.

Химическая коррозия

Химическая коррозия встречается довольно часто. Например, если человек замечает окалину, то он должен понимать, что она появилась в результате соединения металла, то есть взаимодействия, с кислородом. Как правило, если температура окружающей среды высокая, то процесс коррозии будет заметно ускорен. Участвовать в ржавении могут жидкость, то есть вода, соль, любая кислота или щелочь, растворы солей. Если речь идет о химической коррозии металлов, таких как медь или цинк, что их окисление приводит к устойчивому процессу коррозии пленки. Остальные же формируют окись железа. Далее все химические процессы, которые будут происходить, приведут к появлению ржавчины. Она никак не будет обеспечивать защиту, а наоборот, способствует возникновению коррозии. При помощи оцинковки на данный момент можно защитить многие материалы. Также разработаны и другие средства защиты от химической коррозии металлов.

Виды коррозии бетона

Хрупкость бетона может вызываться одним из трех видов коррозии. Довольно нередко встречается изменение структуры данного материала. Рассмотрим же, из-за чего это происходит.

Наиболее распространенным видом коррозии следует назвать разрушение цементного камня. Как правило, это происходит тогда, когда жидкость и атмосферные осадки постоянно воздействуют на материал. Из-за этого структура материала разрушается. Ниже есть более подробные примеры коррозии металлов:

  • Взаимодействие с кислотами. Если цементный камень будет постоянно под воздействием данных материалов, то образуется довольно агрессивный элемент, который вреден для покрытия. Речь идет о бикарбонате кальция.
  • Кристаллизация труднорастворимых веществ. Здесь речь идет о коррозии. Из-за того что грибки, споры и другие вещества попадают в поры, бетонное покрытие начинает быстро разрушаться.

Коррозия: способы защиты

Из-за коррозии производители часто терпят огромные убытки, поэтому ведется огромная работа, которая позволит избежать данного процесса. Причем нужно заметить, что чаще всего коррозии поддается не сам металл, а огромные металлоконструкции. На их создание производители тратят огромные деньги. К сожалению, обеспечить защиту на все 100 % практически невозможно. Однако, если правильно защищать поверхность, то есть проводить абразивоструйную очистку, можно отсрочить процесс коррозии на несколько лет. Также с ней борются лакокрасочным покрытием. Оно надежно защищает материал. Если металл находится под землей, то его необходимо обрабатывать специальными материалами. Только так можно добиться максимальной защиты металла от коррозии.

Меры предотвращения старения

Как уже было сказано выше, процесс коррозии остановить нельзя. Но можно максимально увеличить время, за которое материал будет разрушаться. Также на производстве, как правило, стараются максимально избавиться от факторов, которые влияют на процесс старения. Например, на заводах периодически каждую конструкцию обрабатывают растворами и полиролями. Именно они избавляют материал от негативного влияния на металл со стороны механических, температурных и химических условий. Для того чтобы подробнее в этом разбираться, следует изучить определение коррозии металлов. Если говорить о замедлении эффекта старения, то следует выделить, что для этого можно использовать термическую обработку. В нормальных условиях эксплуатации этот метод позволит максимально избежать быстрого разрушения материала. Сварщики для того, чтобы швы на изделии не разошлись, используют обжиг при температуре в 650 градусов. Такая методика позволит уменьшить интенсивность старения.

Активные и пассивные методы борьбы

Активные способы борьбы с коррозией действуют, изменяя структуру электрического поля. Для этого необходимо использовать постоянный ток. Напряжение должно быть таким, чтобы изделие имело повышенные характеристики. Довольно популярным методом будет использование “жертвенного” анода. Он защищает материал путем собственного разрушения. Условия коррозии металлов описаны выше.

Что касается пассивной защиты, то для этого используется лакокрасочное покрытие. Оно полностью защищает изделие от попадания жидкости, а также кислорода. Благодаря этому поверхность максимально защищена от разрушения. Следует использовать напыление из цинка, меди, никеля. Даже если слой будет сильно разрушен, он он все равно защитит металл от ржавения. Конечно, нужно понимать, что пассивные методы защиты будут актуальными только в том случае, если поверхность не имеет трещины или сколы.

Отзывы о лакокрасочной защите металлов

На данный момент лакокрасочная защита пользуется особой популярностью. Она эффективна, гибка в применении, а также стоит недорого. Однако если необходимо длительное использование металлической конструкции, то такой метод защиты не подойдет. Более чем 7-8 лет лакокрасочные покрытия защищать материал не смогут. Соответственно, их придется обновлять. Скорее всего, придется проводить реставрацию и заменять поверхность материала. Среди других недостатков данного покрытия нужно отметить ограничения в плане использования. Если необходимо усилить трубы, которые находятся под землей или водой, то лакокрасочная защита не подойдет. Поэтому следует понимать, что, если необходимо, чтобы конструкция использовалась более 10 лет, следует прибегнуть к другим методам защиты.

Оцинкование в подробностях

Рассмотрев основные виды коррозии, необходимо также обсудить наиболее эффективные методы защиты. Одним из таковых можно назвать оцинкование. Оно позволяет защищать материал от сильных разрушений путем изменения физико-химических свойств. На данный момент этот метод считается экономным и эффективным, учитывая, что на обработку цинком тратится практически 40 % от всего добываемого материала на Земле. Важно обработать материал антикоррозийным покрытием.

Оцинкование проводится для стальных листов, крепежных деталей, приборов и огромных металлоконструкций. В целом при помощи подобного распыления можно защитить изделия любого размера и формы. Цинк не имеет никакого декоративного назначения, хотя изредка может добавляться в сплав для получения блеска. В целом нужно понимать, что данный металл позволит максимально защитить от коррозии даже в самых агрессивных условиях.

Особенности защитных средств от ржавчины

При работе с металлом любой человек понимает, что перед тем как наносить защитные материалы, необходимо подготовить поверхность. Зачастую все трудности заключаются именно в этом этапе. Для того чтобы создать специальный барьер, который позволит ржавчине добираться до металла, необходимо ввести понятие компаунда. Благодаря ему в комплекте сформируется защита от коррозии. При этом имеет место электроизоляция. Обычно довольно сложно защищаться от коррозии черных металлов.

Из-за специфики использования различных средств для защиты необходимо понимать условия эксплуатации материала. Если металл будет располагаться под землей, то необходимо использовать многослойные покрытия, которые будут иметь не только антикоррозионные свойства, но и усиленную защиту от механических повреждений. Если речь идет о коммуникациях, которые активно взаимодействуют с кислородом и газами, следует использовать средство, минимизирующее воздействие воды и кислорода. Соответственно, повышенное внимание со стороны производителя будет уделяться изоляции от влаги, пара и низких температур. В таком случае следует добавлять присадки и специальные пластификаторы, ведь причины коррозии металлов различны и защищаться следует от всех видов.

Смесь "Уризол"

Смесь “Уризол” следует рассмотреть отдельно, так как ее используют для покрытия трубопровода. Также она подойдет для фитингов, соединительных деталей, крановых узлов и тех изделий, которые постоянно контактируют с нефтью или газами. Данный состав нужен для того, чтобы избавиться от влияния подземных и атмосферных воздействий. Нередко данная смесь также применяется для изоляции бетонных материалов. Данное вещество наносится очень просто, без какого-либо труда. Для того чтобы обработать поверхность, необходимо использовать распылитель. Только так можно избежать коррозии металлов и сплавов подобных изделий. Как только компоненты соединяются, начинается реакция. Из-за этого возникает полимочевина. После этого смесь переходит в гелеобразное и нетекучее состояние, а после некоторого времени становится твердой. Если скорость полимеризации будет медленной, то начнут образовываться подтеки. Они вредные, так как из-за них трудно наращивать толщину покрытия. Нужно заметить, что эта смесь долгое время сохраняет липкое состояние. За счет этого все слои будут максимально равномерными, а промежуточные замеры толщины сравняются между собой. Если процесс полимеризации будет слишком быстрым, то адгезия состава уменьшится. При этом толщина получаемого слоя для изоляции будет неравномерной. К слову, распылительный пистолет быстро засоряется, если скорость покрытия слишком быстрая. Факторы коррозии металлов не будут появляться, если сделать все верно. Для того чтобы предупредить подобные ситуации, необходимо тщательно подбирать компоненты и соблюдать правила изготовления.

Краски и эмали

Защиту металлопластиковых конструкций можно провести при помощи трех способов.

Ранее уже были описаны лакокрасочные покрытия. Они просты, имеют разнообразные цветовое решение, а также с помощью них можно с легкостью обрабатывать огромные поверхности. Так как процесс коррозии металла довольно быстрый, то и задуматься о покрытии материалами следует сразу же.

Второй вид - это пластмассовые покрытия. Как правило, они создаются из нейлона, ПВХ. Данное покрытие будет максимально защищать от воды, кислот и щелочей.

Третий вид - это покрытие каучуком. Зачастую его используют для защиты резервуаров и других конструкций с внутренней стороны.

Фосфатирование и хроматирование

Металлическую поверхность следует правильно подготовить к процессу защиты. То, какие методы будут использоваться, полностью зависит от типа поверхности. Например, черные металлы защищают при помощи фосфатирования. Цветные металлы можно обрабатывать обоими методами. В целом, если говорить о химической подготовке, необходимо уточнить, что она проходит в несколько этапов. Для начала поверхность обезжиривается. Затем промывается при помощи воды. Далее наносится конверсионный слой. После повторно промывается двумя типами воды: питьевой и деминерализованной соответственно. Далее осталось провести пассивацию. Химическую обработку следует проводить при помощи распыления, погружения, а также пароструйного и гидроструйного методов. Первые два способа необходимо применять при помощи специальных агрегатов, которые полностью подготовят поверхность к работе. То, какой метод выбрать, необходимо решать зависимости от размеров, конфигурации изделия и так далее. Для того чтобы лучше разобраться в этом вопросе, следует знать уравнения реакций коррозии металлов.

Заключение

В статье было описано, что такое коррозия и какие виды она имеет. Сейчас уже любой человек после прочтения данной статьи сможет понять, как защитить любой материал от старения. По большому счету сделать это довольно легко, зная все необходимые инструкции. Главное - понимать все характеристики окружающей среды, в которой материал используется. Если изделия находятся в месте, где происходят постоянные вибрации, а также имеются сильнейшие нагрузки, то в лакокрасочных покрытиях будут возникать трещины. Из-за этого на металл станет попадать влага, соответственно, процесс коррозии начинается незамедлительно. В таких случаях лучше дополнительно использовать резиновые герметики и прокладки, тогда покрытие будет служить немного дольше.

Дополнительно нужно сказать, что конструкция при преждевременной деформации будет быстро портиться и стареть. Соответственно, это может привести к совершенно непредвиденным обстоятельствам. Это будет приносить материальную ущерб и может закончиться гибелью человека. Соответственно, защите от коррозии следует уделять особое внимание.



Включайся в дискуссию
Читайте также
Ангелы Апокалипсиса – вострубившие в трубы
Фаршированные макароны «ракушки
Как сделать бисквит сочным Творожные кексы с вишней