Подпишись и читай
самые интересные
статьи первым!

Все натуральные числа 1. Материал по математике "Числа

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд , который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

    Единица- натуральное число, которое не следует ни за каким натуральным числом.

    За каждым натуральным числом следует одно и только одно число

    Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

    Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

    Переместительное свойство: $a+b=b+a$

    Сумма не изменяется при перестановке слагаемых

    Сочетательное свойство: $a+ (b+c) =(a+b) +c$

    Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

    От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

    Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

    Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

    Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

    Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

    Если из числа вычесть нуль, то число не изменится

    Если из числа вычесть его само, то получится нуль

Свойства умножения

    Переместительное $a\cdot b=b\cdot a$

    Произведение двух чисел не изменяется при перестановке множителей

    Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

    Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

    При умножении на единицу произведение не изменяется $m\cdot 1=m$

    При умножении на нуль произведение равно нулю

    Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

    Распределительное свойство умножения относительно сложения

    $(a+b)\cdot c=ac+bc$

    Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

    Например, $5(x+y)=5x+5y$

    Распределительное свойство умножение относительно вычитания

    $(a-b)\cdot c=ac-bc$

    Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

    Например, $5(x-y)=5x-5y$

Сравнение натуральных чисел

    Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

    Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

    Пример 1

    Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

    Решение : На основании указанного свойства,т.к. по условию $a

    в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

    Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

    Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

    Все цифры, расположенные правее разряда, до которого округляют число,заменяют нулями

Простейшее число — это натуральное число . Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.

Натуральные числа - это числа, начиная с единицы. Они образуются естественным образом при счёте. Например, 1,2,3,4,5... - первые натуральные числа.

Наименьшее натуральное число - один. Наибольшего натурального числа не существует. При счёте число ноль не используют, поэтому ноль натуральное число.

Натуральный ряд чисел - это последовательность всех натуральных чисел. Запись натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Для чтения натуральных чисел их разбивают, начиная справа, на группы по 3 цифры в каждой. 3 первые цифры справа - это класс единиц, 3 следующие - это класс тысяч, далее классы миллионов, миллиардов и так далее. Каждая из цифр класса называется его разрядом .

Сравнение натуральных чисел.

Из 2-х натуральных чисел меньше то число, которое при счете называется ранее. Например , число 7 меньше 11 (записывают так: 7 < 11 ). Когда одно число больше второго, это записывают так: 386 > 99 .

Таблица разрядов и классов чисел.

1-й класс единицы

1-й разряд единицы

2-й разряд десятки

3-й разряд сотни

2-й класс тысячи

1-й разряд единицы тысяч

2-й разряд десятки тысяч

3-й разряд сотни тысяч

3-й класс миллионы

1-й разряд единицы миллионов

2-й разряд десятки миллионов

3-й разряд сотни миллионов

4-й класс миллиарды

1-й разряд единицы миллиардов

2-й разряд десятки миллиардов

3-й разряд сотни миллиардов

Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.

Основные свойства натуральных чисел.

  • Коммутативность сложения. a + b = b + a
  • Коммутативность умножения. ab = ba
  • Ассоциативность сложения. (a + b) + c = a + (b + c)
  • Ассоциативность умножения.
  • Дистрибутивность умножения относительно сложения:

Действия над натуральными числами.

4. Деление натуральных чисел - операция, обратная операции умножения.

Если b ∙ с = а , то

Формулы для деления:

а: 1 = a

a: a = 1, a ≠ 0

0: a = 0, a ≠ 0

(а ∙ b) : c = (a:c) ∙ b

(а ∙ b) : c = (b:c) ∙ a

Числовые выражения и числовые равенства.

Запись, где числа соединяются знаками действий, является числовым выражением .

Например, 10∙3+4; (60-2∙5):10.

Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами . У равенства есть левая и правая части.

Порядок выполнения арифметических действий.

Сложение и вычитание чисел - это действия первой степени, а умножение и деление - это действия второй степени.

Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.

Когда выражения состоят из действия только первой и второй степени, то сначала выполняют действия второй степени, а потом - действия первой степени.

Когда в выражении есть скобки - сначала выполняют действия в скобках.

Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

В математике существует несколько различных множеств чисел: действительные, комплексные, целые, рациональные, иррациональные, … В нашей повседневной жизни мы чаще всего используем натуральные числа, так как мы сталкиваемся с ними при счете и при поиске, обозначении количества предметов.

Какие числа называются натуральными

Из десяти цифр можно записать абсолютно любую существующую сумму классов и разрядов. Натуральными значениями считаются те, которые используются :

  • При счете каких-либо предметов (первый, второй, третий, … пятый, … десятый).
  • При обозначении количества предметов (один, два, три…)

N значения всегда целые и положительные. Наибольшего N не существует, так как множество целых значений не ограничено.

Внимание! Натуральные числа получаются при счете предметов или при обозначении их количества.

Абсолютно любое число может быть разложено и представлено в виде разрядных слагаемых, например: 8.346.809=8 миллионов+346 тысяч+809 единиц.

Множество N

Множество N находится в множестве действительных, целых и положительных . На схеме множеств они бы находились друг в друге, так как множество натуральных является их частью.

Множество натуральных чисел обозначается буквой N. Это множество имеет начало, но не имеет конца.

Еще существует расширенное множество N, где включается нуль.

Наименьшее натуральное число

В большинстве математических школ наименьшим значением N считается единица , так как отсутствие предметов считается пустотой.

Но в иностранных математических школах, например во французской, считается натуральным. Наличие в ряде нуля облегчает доказательство некоторых теорем .

Ряд значений N, включающий в себя нуль, называется расширенным и обозначается символом N0 (нулевой индекс).

Ряд натуральных чисел

N ряд – это последовательность всех N совокупностей цифр. Эта последовательность не имеет конца.

Особенность натурального ряда заключается в том, что последующее число будет отличаться на единицу от предыдущего, то есть возрастать. Но значения не могут быть отрицательными .

Внимание! Для удобства счета существуют классы и разряды:

  • Единицы (1, 2, 3),
  • Десятки (10, 20, 30),
  • Сотни (100, 200, 300),
  • Тысячи (1000, 2000, 3000),
  • Десятки тысяч (30.000),
  • Сотни тысяч (800.000),
  • Миллионы (4000000) и т.д.

Все N

Все N находятся во множестве действительных, целых, неотрицательных значений. Они являются их составной частью .

Эти значения уходят в бесконечность, они могут принадлежать классам миллионов, миллиардов, квинтиллионов и т.д.

Например:

  • Пять яблок, три котенка,
  • Десять рублей, тридцать карандашей,
  • Сто килограммов, триста книг,
  • Миллион звезд, три миллиона человек и т.д.

Последовательность в N

В разных математических школах можно встретить два интервала, которым принадлежит последовательность N:

от нуля до плюс бесконечности, включая концы, и от единицы до плюс бесконечности, включая концы, то есть все положительные целые ответы .

N совокупности цифр могут быть как четными, так и не четными. Рассмотрим понятие нечетности.

Нечетные (любые нечетные оканчиваются на цифры 1, 3, 5, 7, 9.) при на два имеют остаток. Например, 7:2=3,5, 11:2=5,5, 23:2=11,5.

Что значит четные N

Любые четные суммы классов оканчиваются на цифры: 0, 2, 4, 6, 8. При делении четных N на 2, остатка не будет, то есть в результате получается целый ответ. Например, 50:2=25, 100:2=50, 3456:2=1728.

Важно! Числовой ряд из N не может состоять только из четных или нечетных значений, так как они должны чередоваться: за четным всегда идет нечетное, за ним снова четное и т.д.

Свойства N

Как и все другие множества, N обладают своими собственными, особыми свойствами. Рассмотрим свойства N ряда (не расширенного).

  • Значение, которое является самым маленьким и которое не следует ни за каким другим – это единица.
  • N представляют собой последовательность, то есть одно натуральное значение следует за другим (кроме единицы – оно первое).
  • Когда мы производим вычислительные операции над N суммами разрядов и классов (складываем, умножаем), то в ответе всегда получается натуральное значение.
  • При вычислениях можно использовать перестановку и сочетание.
  • Каждое последующее значение не может быть меньше предыдущего. Также в N ряде будет действовать такой закон: если число А меньше В, то в числовом ряде всегда найдется С, для которого справедливо равенство: А+С=В.
  • Если взять два натуральных выражения, например А и В, то для них будет справедливо одно из выражений: А=В, А больше В, А меньше В.
  • Если А меньше В, а В меньше С, то отсюда следует, что А меньше С .
  • Если А меньше В, то следует, что: если прибавить к ним одно и то же выражение (С), то А+С меньше В+С. Также справедливо, что если эти значения умножить на С, то АС меньше АВ.
  • Если В больше А, но меньше С, то справедливо: В-А меньше С-А.

Внимание! Все вышеперечисленные неравенства действительны и в обратном направлении.

Как называются компоненты умножения

Во многих простых и даже сложных задачах нахождение ответа зависит от умения школьников

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Запомните!

Натуральные числа — это числа, начиная с 1 , получаемые при счете предметов.

1, 2, 3, 4, 5…

Наименьшее натуральное число — 1 .

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2 , тремя — число 3 .

| — 1, || — 2, ||| — 3, ||||| — 5 …

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами .

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . С помощью этих цифр можно записать любое натуральное число.

Запомните!

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1 .

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной .

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Важно!

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол . Гугол — число, у которого 100 нулей.

Натуральные числа – натуральные числа это числа которые используются для счета предметов. Множество всех натуральных чисел иногда называют натуральным рядом: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, и т.д.

Для записи натуральных чисел используют десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С помощью них, можно записать любое натуральное число. Такая запись чисел называется десятичной.

Натуральный ряд чисел можно продолжать бесконечно. Нет такого числа, которые было бы последнее, потому что к последнему числу всегда можно прибавить единицу и получится число, уже большее искомого. В таком случае говорят, что в натуральном ряду нет наибольшего числа.

Разряды натуральных чисел

В записи любого числа с помощью цифр, место на котором цифра стоит в числе имеет решающее значение. Например, цифра 3 означает: 3 единицы, если она будет стоять в числе на последнем месте; 3 десятка, если она будет стоять в числе на предпоследнем месте; 4 сотни, если она будет стоять в числе на третьем месте с конца.

Последняя цифра означает разряд единиц, предпоследняя – разряд десятков, 3 с конца –разряд сотен.

Однозначные и многозначные цифры

Если в каком-либо разряде числа стоит цифра 0, это означает, что в данном разряде нет единиц.

С помощью цифры 0 обозначается число ноль. Ноль это «ни одного».

Нуль не относится к натуральным числам. Хотя некоторые математики считаю иначе.

Если число состоит из одной цифры его называют однозначным, из двух – двузначным, из трех – трехзначными, и т.д.

Числа которые не являются однозначными еще называют многозначными.

Классы из цифр для чтения больших натуральных чисел

Для чтения больших натуральных чисел, число разбивают на группы из трех цифр, начиная с правого края. Эти группы называются классы.

Первые три цифры с правого края составляют класс единиц, следующие три – класс тысяч, следующие три – класс миллионов.

Миллион – тысяча тысяч, для записи используют сокращение млн. 1 млн. = 1 000 000.

Миллиард = это тысяча миллионов. Для записи используют сокращение млрд. 1 млрд. = 1 000 000 000.

Пример записи и чтения

Это число имеет в классе миллиардов 15 единиц, 389 единиц в классе миллионов, нуль единиц в классе тысяч и 286 единиц в ласе единиц.

Данное число читается так: 15 миллиардов 389 миллионов 286.

Читают числа слева направо. По очереди называют число единиц каждого класса и потом добавляют название класса.



Включайся в дискуссию
Читайте также
Ангелы Апокалипсиса – вострубившие в трубы
Фаршированные макароны «ракушки
Как сделать бисквит сочным Творожные кексы с вишней