Подпишись и читай
самые интересные
статьи первым!

Эра дистанционного контроля оборудования становится реальностью. Системы контроля дистанционного управления

Рабочий процесс требует дисциплины и порядка. Но как контролировать рабочий персонал без нарушения личностных границ, не распугивать сотрудников и получить пользу?

В этой статье попробуем разобраться: какие проблемы возникают у руководителей при отсутствии контроля, как контролировать сотрудников и какие при этом ошибки совершают руководители.

1. Отсутствие контроля

Проблемы, которые возникают у компании при отсутствии контроля:

  • Опоздания на работу; частые перекуры и чаепития;
  • Некачественное выполнение работы;
  • Сотрудники срывают сроки выполнения работы;
  • Низкая продуктивность работы, как одного сотрудника, так и всего персонала;
  • Отсутствие четкого распорядка дня – рабочее время, обед, конференции, собрания.

2. Как контролировать сотрудников

Выделяем три распространенных метода контроля за сотрудниками:

  • Журналы учета
  • Видеонаблюдение
  • Программы контроля

Журналы учета

Простой и недорогой метод контроля. Как он работает: ведется журнал, в котором отмечается время прихода и ухода сотрудника. С помощью этого метода контроля руководитель получает информацию о том, опаздывает работник или нет, как часто покидает рабочее место по личным делам и когда уходит с работы. Минус такого метода контроля в том, что руководитель не сможет знать занимается ли он решением задач в рабочее время.

Видеонаблюдение

Распространенный прием контроля персонала. Как он работает: видеокамера фиксирует приход и уход сотрудника, пребывание в офисе и на своем рабочем месте. Но этот метод не будет работать эффективно, если сотрудник работает за компьютером. Камера не сможет зафиксировать занят он рабочими задачами, чтением новостей или раскладыванием пасьянса.

Программы дистанционного контроля

Популярный способ контроля. Плюс таких программ в том, что они устанавливаются на рабочие компьютеры, фиксируют всю рабочую и нерабочую информацию и передает её руководителю. Такой вид контроля помогает получить сведения о том, когда сотрудник присутствует/отсутствует на работе, чем он занят, какие задачи решает и сколько времени уходит на его перерывы и кофе.

3. Ошибки контроля персонала, которые допускают руководители

Выбранный руководителем метод контроля при неправильном подходе может привести к негативным последствиям.

Четыре классические ошибки контроля, которые допускают руководители:

  • Непонятный контроль. Руководитель проверяет своих подчиненных, но совершенно не понимает содержания рабочего процесса.

Например, менеджер не сможет контролировать технический процесс самостоятельно, юрист не сможет проверить работу бухгалтера, а программист – деятельность редактора. В таком случае лучше доверить контроль специалисту в этой сфере.

  • Контроль, который переходит в конфликтные ситуации. Руководитель контролирует процесс, но замечает лишь ошибки работника и при первой возможности указываете ему на них? Ни один нормальный человек не выдержит, если вы будете его только «шпынять». Контроль должен быть системным, а не пугающим и угнетающим.
  • Скрытый контроль, который переходит в явный при обнаружении нарушений. Если руководитель устанавливает систему контроля скрытно, то не стоит при первой же ошибке «выскакивать из-за кустов» с криком «Ага!!! Попался!». Такие «выскакивания» могут только усилить негативную реакцию сотрудника и целого коллектива. Узнав о скрытой слежке работники и так будут переживать и стараться сделать работу качественно. А если руководитель заметил вопиющие нарушения в работе, можно всегда это обсудить.
  • Формальный контроль – это контроль без конкретных действий и требований к работнику.

Например, когда руководитель отдела поручает задание менеджеру и говорит «Смотри у меня, я все проконтролирую», но на практике ничего не делает. Тогда менеджер понимает, что его работу не проверяют и можно схалтурить. Такой недоконтроль негативно сказывается на работе не только отдела, но и всей компании.

Вывод

Правильная организация контроля за сотрудниками позволит решить проблемы с дисциплиной, выявить изъяны в рабочем процессе и настроить коллектив на продуктивную работу.

Система централизованного авто­матического контроля типа КМ-1 фирмы «Аутроника» (Норвегия) работает по принципу совместного использования датчиков в устройствах сигнализации, индикации, регистрации и является системой не­прерывного контроля параметров (рис. 4.32) . Она включает в себя индивидуальную и обобщенную АПС параметров, цифровую и шкальную индикацию, регистрацию отклонений параметров за допустимые параметры, а также исполнительную сигнализацию о работе механизмов.

Конструктивно система состоит из расположенных на горизон­тальной панели пульта контроля 14 кассет, содержащих отдель­ные модули, которые включают сигнальные лампы, кнопки вы­зова параметров на индикацию и кнопки квитирования сигналов. На верхней панели пульта в центральном пульте управления находится мнемосхема энергетических установок, на которой имеются лампы сигнальной и исполнительной сигнали­зации, а также табло цифровой индикации. Система централизованного авто­матического контроля охва­тывает 271 точку контроля и сигнализации главного двигателя и основных ВМ, а также осуществляет контроль 20 параметров (температуры и давления) по дистанционным приборам.

Система централизованного авто­матического контроля должна быть постоянно включена и подавать оп­тические и акустические предупредительные сигналы при возни­кновении следующих неполадок:

Неисправности системы безопасности (общий предупреди­тельный сигнал уменьшения частоты вращения, остановки), системы дистанционного управления (общий предупредительный сигнал), датчика темпера­туры рамового подшипника, детектора масляного тумана;

Большого перепада давления масла и топлива на фильт­рах;

Недостаточного давления масла и охлаждающей воды перед дизелем, топлива, морской воды, пускового воздуха, управляю­щего воздуха (устройство аварийного выключения);

Повышенной температуры смазочного масла и охлаждающей воды перед дизелем, охлаждающей воды после цилиндров, охлаж­дающей воды форсунок, наддувочного воздуха, рамового под­шипника;

Пониженной температуры смазочного масла перед дизелем, а также наддувочного воздуха;

Высокой концентрации масляного тумана (по показаниям детектора масляного тумана), недостатка охлаждающей воды форсунок, закрытия выходного запорного клапана охлаждающей воды, слишком высокой (слишком низкой) вязкости топлива, боль­шого отклонения среднего значения температуры выпускных га­зов.

Сигнал по пониженной температуре наддувочного воздуха сра­батывает с задержкой времени до 30 мин, в диапазоне низких ча­стот вращения он отключается (при наполнении топливом ниже 50 %). Сигнал тревоги «Отклонение среднего значения отработав­ших газов» также отключается при температуре ниже 200 °С.

На ПУ установлены указатели: давления смазочного масла и охлаждающей пресной воды перед дизелем, масла перед коро­мыслами клапанов и ТК, охлаждающей воды форсунок перед ди­зелем, топлива, морской охлаждающей воды, наддувочного воз­духа, пускового и управляющего воздуха; температуры смазочного масла перед дизелем, охлаждающей воды после дизеля, надду­вочного воздуха после ВО.

В состав системы аварийной безопасности энергетических установок с двумя среднеоборотным дизелем, работающими на один винта регулируемого шага, входят ручное аварийное выключе­ние для каждого дизеля и автоматическое выключение муфт сцеп­ления с пультом управления и с мостика по четырем критериям остановки с авто­матическим выключением муфт сцепления на каждый дизель, по двум критериям уменьшения нагрузки на каждый дизель и по одному критерию остановки с автоматическим выключением муфты сцепления на обоих дизелях.

После выключения обоих дизелей шаг ГВ должен автоматиче­ски перейти в нулевое положение, а также должны включиться блокировка дистанционного пуска и блокировка сцепления на каждый дизель.

Остановка главного двигателя с последующим выключением муфт сцепления (выход общего сигнала остановки) происходит из-за превышений номинальной частоты вращения или допускаемой температуры рамового подшипника (без временной задержки), недостаточного давления смазочного масла перед дизелем (с задержкой 4 с), перед ТК (с задержкой 4 с) и в редукторе (с задержкой 15 с).

Выключение муфт сцепления главного двигателя происходит из-за неисправ­ности системы распределения нагрузки между дизелями (с задерж­кой 30 с), повышенной концентрации масляных паров в картере (без временной задержки с последующим уменьшением частоты вращения), недостаточного давления масла в редукторе (с задерж­кой времени 15 с с последующим уменьшением частоты вращения). Уменьшение нагрузки главного двигателя путем автоматического снижения шага ГВ (с выходом общего сигнала уменьшения) происходит в случае недостаточного давления охлаждающей воды перед дизелем (с за­держкой 4 с) и превышения температуры охлаждающей воды по­сле цилиндра (без временной задержки). Общий сигнал тревоги «Неисправность в системе безопасности» включается при отказе датчика частоты вращения коленчатого вала, а также при обрыве провода.

Сигнализационно-контрольное устройство типа КМ-1 фирмы «Аутроника» (см. табл. 4.9) включает в себя контактные датчики (с разомкнутыми контактами), платиновые термосопротивления типа Pt-100 для измерения температуры, термисторные датчики типа Т-802 для измерения температуры, термопары типа NiCr-Ni вместе с усилителями типа GA-3 для измерения температуры, манометрические датчики типа GT-1, датчики разницы давлений типа GT-2. Устройство КМ-1 снабжено магнитоэлектрическим из­мерителем аналоговых величин или цифровым измерителем с дат­чиками разных типов в любой необходимой комбинации. Устрой­ство КМ-1 содержит одну или более кассет, каждая из которых включает определенное количество контактных элементов, каналовый модуль и прочие элементы. Питание модулей - посто­янный ток 8-40 мА напряжением 24 В, измеряемые датчиками температуры 0-100, 0-160, 0-300, 0-600 °С, давления 0-0,1; 0-0,25; 0-0,4; 0-0,6; 0-1; 0-16; 0-4; 0-6 МПа, разности давлений 0-0,1; 0-0,6 МПа.

Отсчет показаний производится во всем рабочем интервале из­мерительных приборов. Точность измерения и точность сигнали­зации тревоги составляют ±2 % полного интервала, гистерезис каналового пакета - около 0,5 %, задержка сигнализации тре­воги: аналоговые каналовые модули в стандартном исполнении - около 0,5 с; каналовые модули с контактным датчиком в стандарт­ном исполнении - около 2 с. В каждой кассете, входящей в со­став устройства КМ-1, имеются обычный плавкий предохранитель и стабилизатор напряжения 24/16 В постоянного тока. Стабили­затор напряжения является типичным стабилизатором с ограни­чителем тока, он предусмотрен для питания постоянным током напряжением 24 В от аккумулятора или выпрямителя. На выходе получается стабилизированное напряжение 16 В.

Измерительный прибор КВМ-1 предназначен для измерения величины сигналов, подаваемых от аналоговых датчиков, под­ключенных к устройству КМ-1.

Модуль сигнализации помех КМЕ-1 служит для обнаружения разрывов и коротких замыканий в кабелях аналоговых датчиков, а также перебоя в питании устройства. Каналовые модули типов КМС-2, КМС-16 и КМС-17 используют при совместной работе с аналоговым датчиком в случае, когда требуется отдельная уста­новка предельных значений тревоги. Модули отсчета для сигнали­зации отклонения от среднего значения и тревоги при высокой тем­пературе типа KMR-1/т предназначены для температур 0-600 °С, измеряемых при помощи термоэлементов и усилителя GA-3, при­меняются вместе с каналовыми модулями типа КМС 2/т2, выраба­тывающими для них предельные значения тревоги.

Каналовый модуль типа КМС-3 применяют для контактных датчиков, имеющих в нормальном состоянии сомкнутые контакты без напряжения (например, датчики давления или уровня). Модуль типа КМХ-1 предназначен для коммутации входного аналогового сигнала в каналовые модули типов КМС-1 и КМС-2, чтобы контролировать вызов тревоги при установленных предель­ных значениях сигнала.

Все устройства КМ-1 приспособлены для группирования тревог. Поэтому вверху каждой кассеты находится специальная группи­рующая плата, которую можно подключить к 20 каналовым па­кетам. Все сирены и зуммеры выключаются при отключении из центральном пульте управления. При отключении из каюты старшего механика или вах­тенного механика все зуммеры утихают, за исключением сирены в машинном отделении зуммера в центральном пульте управления. При помощи других отключений зати­хают только зуммеры соответствующей панели.

Детектор масляного тумана (конт­рольная система картера) «Визатрон ВН-115» позволяет определять концентрацию масляных паров в картере дизеля, повышающуюся, например в результате нагрева подшипников коленча­того вала, и тем самым предупредить отказ главного двигателя его свое­временной аварийной остановкой.

Рассмотрим принцип действия детектора. Если циркуляцион­ное масло, применяемое для смазки подшипников дизеля, перегре­ется, то образуется избыточное количество смеси масляных паров и масляного дыма (масляного тумана). Некоторая часть масляного тумана поглощается разбрызгиваемым маслом, а остальная часть повышает концентрацию масляного тумана в атмосфере картера. Масляный туман поглощает свет. В зависимости от концентрации степень поглощения различна (световая абсорбция пропорциональна степени концентрации масляного тумана, что и используется для контроля). Образующийся в картере масляный туман всасывается специальным устройством. Поток масляного тумана проходит камеру, в которой создается световой пучок. С помощью полупро­водника и фотодиода измеряется плотность света, прошедшего через пробу масляного тумана. Степень изменения его плотности имеет свое предельное значение, при достижении которого пода­ется сигнал тревоги в системе предупредительной сигнализации дизеля. Непрозрачность (величина абсорбции) масляных паров незначительно зависит от температуры и с увеличением концен­трации масляных паров стремится к точке насыщения по экспо­ненте. При уменьшении концентрации на 1/2 непрозрачность па­дает на 1/4 (рис. 4.33).

Пробы масляного тумана отбираются от отдельных картерных секций и направляются в общую собирательную трубу, где они перемешиваются. Установка не имеет никаких подвижных меха­нических частей. Разрежение (100-150 Па, но не более 250 Па), создаваемое воздушным эжекторным насосом, вызывает отсос паров масла из картера. Пары из картера по собирательным труб­кам (рис. 4.34) попадают в общую камеру прибора, затем проходят сепаратор, в котором под влиянием центробежной силы отделя­ются крупные частицы масла.

Отсепарированное масло поступает по каналам непосредствен­но в воздушный насос (эжектор) и выводится из прибора, что пре­дохраняет его от загрязнения маслом. Из сепаратора контроль­ный масляный туман направляется по каналу в оптическую из­мерительную щель. Загрязнения, образующиеся на окошечке, могут ухудшить точность подачи сигнала тревоги, в связи с чем яркость источника света имеет систему регулировки.

Технические характеристики прибора следующие: питание постоянным током напряжением 18-30 В (блок электропитания держит эксплуатационное напряжение стабильным); максимальное потребление тока 0,25 А, допустимая остаточная неравномерность выпрямленного тока 1 В; защита от перенапряжения: до 60 В за 1 с, до 250 В за 5 мс; защита от неправильной полярности через диод до 400 В; давление рабочего воздуха около 0,06 МПа, по­требление воздуха 0,5 м 3 /ч (при? = 0,08 МПа); чувствительность прибора регулируется по величине абсорбции от 5 до 30 %, что соответствует концентрации масляного тумана от 0,453 до 3 мг/л (нижняя граница для взрывоопасной смеси - около 50 мг масла на 1 л воздуха); масса прибора около 7 кг; габариты 175?435?122 мм; испытан при вибрации частотой 6 Гц; отно­сительная влажность воздуха до 90 % при t = 70 °С; допустимая эксплуатационная температура от 0 до 75 °С. Демпферная плат­форма выполнена из стали, кожух измерительной приставки - из легкого металла.

Возможности устройств для дистанционного управления отоплением с каждым годом (да что там с годом - практически ежемесячно!) становятся все более совершенными. Разработчики приложений для смартфонов стараются делать их удобными для использования и простыми для понимания даже неподготовленными людьми. Вкратце же перечислим лишь основные возможности таких систем, которые поддерживают:

  • обычный режим работы, когда заданная температура поддерживается по всему дому;
  • зональный режим, когда в различных помещениях может быть индивидуальная температура;
  • предотвращение разморозки системы отопления (промерзание труб) в холодное время года, когда Вы находитесь вдали от своего загородного дома или дачи;
  • возможность заблаговременного включения котла, например, нужно прогреть загородный дом, когда Вы соберётесь посетить его в выходные или праздники;
  • всегда быть в курсе работы вашего автономного отопления и при необходимости осуществлять его диагностику;
  • временной режим, при котором в разное время в течение суток в доме может поддерживаться свой тепловой режим со значительным снижением материальных затрат на топливо, например, можно настраивать котел на малую мощность (соответственно и на малое потребление топлива), отправляясь на работу или по делам, и включать нормальный режим перед своим возвращением.

Удаленное управление отоплением подразумевает, что любой из этих режимов, а также конкретные значения температуры в помещениях изменяются при помощи мобильной связи, или осуществляется управление отоплением через Интернет.
Такой подход является частью идеологии создания “умного дома”, что влечет за собой дальнейшее развитие всех инженерных систем дома с целью обеспечения удобства пользования и создание наиболее комфортных условий проживания.

Какой системой отопления можно управлять дистанционно?

В загородных домах и коттеджах в настоящее время чаще всего используются двухтрубные системы с принудительной циркуляцией теплоносителя: циркуляционный насос прокачивает по всей отопительной системе теплоноситель, который, благодаря гребенке - распределителю, может подаваться к каждому отопительному прибору.
В таких системах, как правило применяется блок безопасности системы отопления для ее защиты от разрушения при непредвиденных ситуациях, например, в случае повышения давления сверх допустимого.
Также необходимо наличие дополнительного оборудования для управления работой системы отопления: датчики, специальные клапаны и устройства для регулировки расхода теплоносителя, а также необходимо объединение различных устройств в информационную сеть

Погодозависимое управление отоплением

На сегодняшний день считается наиболее перспективным. В таких системах в дополнение к датчику комнатной температуры применяется еще и измеритель внешней температуры воздуха. В принципе, погодозависимый регулятор отопления будет работать и с одним внешним датчиком, но использование двух позволяет добиться более точного поддержания режима и даже реализовать самоадаптацию системы под конкретные изменения температуры: если на улице становится холодней, то температура теплоносителя в системе заранее повышается, если теплей – то заранее уменьшается. Кроме экономии топлива это уменьшает инерционность работы системы, что повышает ее эффективность и обеспечивает также дополнительное снижение затрат. Одной из базовых точек погодозависимое управление отоплением может использовать температуру плюс двадцать градусов – при ней температура теплоносителя берется равной окружающей, при этом фактически обогрев отключается. Также необходимо учитывать и зональное регулирование температуры, т.е. если, например, в одном из помещений собралось большое количество людей, за счет чего в нем стало более жарко, то система фиксирует локальное увеличение температуры относительно той, что установил погодный регулятор отопления, и осуществляет коррекцию в этой зоне.
Вообще в интернете разгорелись нешуточные баталии по поводу - стоит ли вообще использовать погодозависимую автоматику или это деньги, выброшенные на ветер? Если коротко, то мнение наших специалистов, подтвержденное, кстати, отзывами многочисленных клиентов, однозначное - да, стоит, но не во всех случаях. А в каких? Ответ

Виды систем дистанционного управления отоплением

В настоящее время используются две системы для дистанционного управления отоплением:

  • с использованием комплекта оборудования с интернет-шлюзом. Наличие Wi-Fi роутера и сети интернет в этом случае обязательно.
  • с использованием GSM модуля управления отоплением. Требуется специальный GSM модуль с сим-картой оператора сотовой связи.

Дистанционное управление котельной с помощью мобильного GSM

А что делать, если проводного интернета в загородном доме нет? Как можно управлять отоплением в этом случае?

Да очень просто - при помощи специального модуля GSM и, естественно, мобильного телефона. Фактически модуль GSM выполняет роль вашего личного помощника - Вы позвонили ему, дали команду, например, заранее натопить пожарче к определенному времени - и вся семья приедет в теплый и уютный дом. Или наоборот, забыли утром, уезжая на работу, убавить мощность котла - не вопрос, можно это сделать прямо с работы, через интернет или прямо со смартфона, пока еще добираетесь до работы. GSM модуль - это компактный прибор с собственной SIM-картой любого оператора (важно, чтобы он обеспечивал уверенный прием сигнала в данной местности), позволяющий управлять климатом в помещении с любого телефона (спутниковой, мобильной или фиксированной связи), планшета или ПК.

На ваш телефон, в зависимости от сделанных настроек, будут приходить или короткие СМС–уведомления с различной информацией и указаниями по изменению настроек отопительного котла, или поступать телефонные звонки с различной информацией о работе системы отопления. На телефон устанавливается специальное мобильное приложение (есть версии и для Android, и для iOs, и для Windows Phone), позволяющее напрямую дистанционно управлять практически всеми параметрами работы отопительного котла.
GSM модуль управления отоплением - это по сути компьютер, состыкованный с внешними датчиками и имеющий возможность для изменения режимов работы системы отопления. Естественно, модуль должен находиться в зоне уверенного приема операторов мобильной связи.

GSM модуль управления отоплением может работать в нескольких режимах:

  • автоматическом, когда по сигналам от установленных датчиков контроллер поддерживает заданные режимы по заданной программе;
  • СМС управление отоплением, когда система отопления управляется посредством отправки СМС. В этом случае при поступлении новых данных, например о температуре в помещении, контроллер принимает их к исполнению и начинает поддерживать в автоматическом режиме уже их;
  • предупреждающем, посредством отправки тревожных сообщений о текущем состоянии дома (утечка газа, прорыв системы водоснабжения и т.д.);
  • дистанционного управления другими устройствами, подключенными к модулю GSM (полив, освещение, сигнализация и т.д.).

GSM – контроль отопления позволяет удаленно:

  • принимать отчеты о температуре в помещении;
  • получать оповещения о текущем состоянии отопительного оборудования;
  • изменять режим работы системы, повышая или понижая температуру, в том числе и отдельно в каждом помещении.

Данными функциями управление отоплением не ограничивается. В принципе, любая система обогрева может быть превращена в дистанционную. Для этого она должна иметь автоматический режим работы, и к ней должен быть подключен специальный GSM контроллер для управления отоплением и связи с абонентом.

Дистанционное управление котлом с использованием комплекта оборудования с интернет-шлюзом

Теперь рассмотрим вариант удаленного управления отоплением, если в загородном доме или даче есть интернет и, естественно, Wi-Fi роутер (он же маршрутизатор).
Тут все гораздо проще - можно посмотреть возможности устройств, предложенных ниже и навсегда забыть о переживаниях по поводу состояния системы отопления Вашего жилища.

Салус ИТ500 обеспечивает контроль и настройку параметров работы максимум в двух зонах отопления, например, в 1-й комнате на первом этаже коттеджа и душевой на втором этаже.
В комплект входит актуатор (приемник котла), комнатный 2-х канальный термостат (недельный программатор котла, пульт управления котлом) и интернет-шлюз, подключаемый к интернет - маршрутизатору (роутеру).

Возможности управления системой отопления с использованием комплекта оборудования с интернет-шлюзом Salus iT500:

  • управление режимами только отопления (котлом и, при необходимости, насосом);
  • управление несколькими зонами отопления;
  • управление отоплением и горячим водоснабжением загородного дома.
  • поддержание разной температуры в разных помещениях, расписание температурных режимов по дням, часам и минутам
  • 6 предустановленных режимов отопления при поставке
  • управление нагревом горячей воды, автоматические режимы управления, в том числе энергосберегающий и режим "отпуска".
  • уникальная система связи устройств через интернет, обеспечивающая надежные подключение и контроль системы отопления: смартфон (или персональный компьютер) -> интернет - сервер -> роутер (маршрутизатор) -> термостат -> ресивер -> котел

Все оборудование беспроводное и связывается между собой по радиоканалу, т.е. отпадает необходимость прокладки электрической проводки. Комнатный термостат для котла отопления программируется на посуточный, недельный или режимы работы 5+2. На экране термостата и в приложениях для удаленного управления отоплением отображается текущее состояния котла, текущая температура и установленная. Настройку графика работы можно делать с панели термостата, через интернет-браузер или с помощью мобильного приложения.
Термостат имеет современный дизайн, отличается высокой надежностью и безопасностью при его использовании.
С использованием дополнительного оборудования Salus Controls возможно управление, в том числе дистанционное, теплыми полами, газовыми и электрическими котлами, масляными системами обогрева, а также практически любыми другими отопительными системами и приборами.
Для удаленного управления не требуется выделенный внешний IP-адрес, вся система отлично работает на любом мобильном интернете (Yota, Мегафон, Билайн и т.п.), также возможно управление с компьютеров и мобильных устройств на операционных системах Android и iOS.

Что делать, если в доме нет проводного интернета, а уже приобретен Wi-Fi интернет термостат?

Скорее всего на даче имеется покрытие мобильных операторов, не правда ли? Значит и интернет у Вас есть! Просто покупаете Wi-Fi маршрутизатор с USB портом и дополнительно к нему 3G или 4G модем. Устанавливаете в модем SIM-карту любого мобильного оператора, обеспечивающего уверенный сигнал в зоне нахождения вашего жилища. Сам модем вставляете в USB-разъем роутера и всё - теперь у Вас есть возможность управлять отоплением дачи удаленно!

Если для кого-то iT500 покажется дороговатым, то компания предлагает более бюджетное решение - интернет термостат Salus RT310i
Терморегулятор обладает несколько урезанными возможностями по сравнению со "cтаршим братом", но может оказаться ему достойной заменой, благодаря более низкой цене комплекта. Внешне RT310i выглядит скромнее по сравнению с первоклассным high-tech дизайном iT500, у него отсутствует сенсорное управление, однако по функциональным возможностям модели практически идентичны. За исключением того, что если iT 500 способен управлять 2-мя зонами отопления или охлаждения, то RT310i может управлять только одной зоной.

Не хватает возможностей iT500? Нет проблем - Salus iT600 может всё и даже больше!

Если Вам не хватает функционала iT500 по управлению только двумя зонами отопления, то на нашем сайте представлена более функциональная многозональная (есть проводная и беспроводная версии) система Salus iT 600 Smart Home . Уж чего-чего, а ее возможностей по удаленному управлению отоплением (и не только!) хватит даже самому взыскательному потребителю!

iT 600 Smart Home объединяет в себе возможности управления тёплыми водяными полами, дистанционного управления отоплением при помощи термостатов, единую коммутацию на уровне «система умный дом», изменение температуры в каждой комнате при помощи смартфона с выходом в интернет, контроль и управление любыми электрическими приборами в доме, подключение датчиков открытия окон и дверей и множество других функциональных возможностей. Система намного опередила не только своих конкурентов в области удаленного управления отоплением, но и задала тренд в области автоматизации и диспетчеризации инженерных систем на многие годы вперёд!

Подробнее с возможностями системы можно ознакомиться в статье:
Умный дом. Система управления отoплением SALUS iT600

Внимание! Новая линейка продуктов Salus iT600 Smart Home (Умный дом) уже в продаже!

Теперь можно не только дистанционно управлять отоплением, а и охранять дом и управлять электроприборами!

Теперь у Вас появилась возможность купить Salus iT600 Smart Home - новую линейку автоматики для Умного дома!

Это та самая полноценная система для удаленного управления отоплением через интернет iT600 плюс дополнительные возможности:

  • применение универсального интернет шлюза Smart Home UGE600, который теперь поддерживает до 100 беспроводных устройств сети ZigBee и используется взамен прошлогодней версии шлюза Salus G30.
  • контроль и управление различными электроприборами , подключенными к умным розеткам Salus SPE600 с возможностью учета потребленной электроэнергии
  • подключение и контроль охранной сигнализации при помощи беспроводных датчиков открытия дверей или окон Salus OS600 Door Sensor
  • управление вашей системой стало еще удобнее , благодаря новому приложению Salus Smart Home для смартфонов на iOS и Android, интерфейс которого и регистрация устройств стали намного проще и понятнее!

Все компоненты системы - это беспроводные устройства, работающие в современном стандарте домашней сети ZigBee, теперь Вы можете создавать отдельные группы устройств, работающие в одной связке и которым можно назначать индивидуальные задачи.

В будущем инженеры компании намерены расширять возможности системы управления умным домом, но уже сейчас Вы можете купить Salus iT600 Smart Home, начав с самого необходимого, и построить свой Умный дом по весьма привлекательной цене!

А что делать владельцам устаревших систем отопления?

Tech WiFi 8S может управлять температурой в 8-ми помещениях, в каждом из которых может быть до 6-ти термоприводов!
Кроме управления термоэлектрическими приводами, контроллер также может управлять котлом: при достижении во всех помещениях заданной температуры, он с помощью «сухого контакта» отключит котел.
Купить систему управления отоплением TECH WiFi-8S

Удаленное управление сложными отопительными системами

Все большую долю в этом сегменте рынка отвоевывает себе польская компания Tech Controllers, производящая широкий спектр контроллеров с возможностью удаленного управления.
Сами по себе контроллеры Tech - это многофункциональные устройства, являющиеся основной, базовой частью системы, которые могут удаленно управлять практически любыми по сложности отопительными системами при помощи дополнительных модулей. Возможностей масса, поэтому на примере рассмотрим лишь возможности по удаленному управлению.

Пример монтажа оборудования Tech Controllers

На фото для монтажа использованы:
1. Контроллер Tech ST-409n - многофункциональный прибор, предназначенный для управления центральной отопительной системой, обеспечивающий:
взаимодействие с тремя проводными комнатными регуляторами
взаимодействие с беспроводным комнатным терморегулятором
плавное управление тремя смешивающими клапанами
управление насосом ГВС
защиту температуры возврата
погодозависимое управление и недельное программирование
возможность подключения модуля ST-65 GSM для дистанционного управления отоплением со смартфона GSM
возможность подключения модуля ST-505, которое позволяет осуществлять дистанционное управление котлом через интернет.
возможность управления двумя добавочными клапанами с помощью дополнительных модулей ST-61v4 или ST-431 N
Возможность управления дополнительным оборудованием, например гаражными воротами, освещением или оросителем и т.п.

Для дистанционного управления могут использоваться различные модули Tech, все зависит от конкретных потребностей владельца. Например:

Что делать, если система отопления настолько индивидуальна, что ни одно из приведенных выше решений не может в полной мере обеспечить потребности ее владельца по ее управлению?
Безвыходных ситуаций не бывает! Чаще всего заказчик сам просто не понимает (да и не должен!) всех возможностей современных систем дистанционного управления отоплением. Действительно сложно разобраться неподготовленному человеку во всем этом изобилии предлагаемых на рынке устройств, которые совершенно отличаются друг от друга по функционалу, цене, и, конечно же, качеству. Да и монтажники, зачастую, просто не имеют представления о возможностях по управлению отопительными системами - их задача смонтировать систему, а вот как часто вы будете бегать по дому (или в котельную) и крутить различные вентили, чтобы обеспечить себе постоянный тепловой комфорт их не волнует. Нашим специалистам не раз приходилось практически полностью переделывать "творения" таких умельцев, а это, поверьте, стоит немалых денег. Скупой платит дважды... Обращайтесь, мы бесплатно проконсультируем, а при необходимости и смонтируем систему дистанционного управления отоплением, поможем с подбором качественного оборудования по приемлемой цене.

Специалисты компании "Термогород" Москва помогут Вам правильно подобрать, купить, а также смонтировать систему удаленного управления отоплением, найдут приемлемое решение по цене. Задавайте любые интересующие Вас вопросы, консультация по телефону абсолютно бесплатна!
Вы останетесь довольны, сотрудничая с нами!

Никки Бишоп (Nikki Bishop) – [email protected], Аарон Круз (Aaron Crews) - [email protected]

Автоматизированный контроль ключевых технологических активов повышает надежность производственного оборудования и сокращает издержки на его техническое обслуживание. Дистанционный контроль обеспечивает мгновенную передачу сигналов предупреждения, удаленную диагностику и позволяет круглосуточно отслеживать состояние ключевых технологических активов.

Развитие коммуникационных технологий в последние годы позволило мгновенно устанавливать связь с кем угодно практически в любой точке мира. Эти технологии можно также применять в заводских цехах для того, чтобы находящееся там оборудование могло сообщать о своем состоянии персоналу. Теперь производственные активы могут «общаться» с диспетчерской. Более того, нужный человек получит оповещение именно тогда, когда оборудованию необходимо уделить внимание.

Но прежде чем перейти к обсуждению дистанционного контроля, необходимо рассмотреть вопрос о том, как выбрать наиболее эффективную стратегию контроля технологических активов. Правильная стратегия автоматизированного мониторинга - это фундамент, на котором строится инфраструктура эффективного дистанционного контроля (рис. 1).

Рис. 1. Автоматизированный контроль позволяет точно и эффективно планировать ремонты

Не секрет, что правильная стратегия профилактического технического обслуживания повышает общую надежность и помогает достичь установленных целевых показателей эксплуатационной готовности производства. Однако не все стратегии профилактического обслуживания дают одинаковый результат. Профилактическое техническое обслуживание, основанное на периодическом и, возможно, нечастом сборе данных, не предоставляет полной информации о работоспособности активов в реальном времени. Периодические данные могут появляться в результате «обходов с планшетом», когда сотрудники через определенные интервалы времени отправляются на места эксплуатации оборудования, чтобы вручную собрать данные. Это может происходить раз в смену, раз в сутки, а может быть и еще реже.

Такой способ обеспечивает получение лишь «моментального снимка» данных о состоянии оборудования, и раннего предупреждения о надвигающихся проблемах может не произойти. Более того, отправка сотрудников для сбора данных вручную на места, где эксплуатируется оборудование, может угрожать их безопасности.

При слабом или полном отсутствии понимания, какие производственные активы на самом деле нуждаются во внимании, возможна ситуация, когда ресурсы тратятся на обслуживание оборудования, которому оно не требуется. Исследования показали, что более 60% обычных выездов технических специалистов по проверке контрольно-измерительных приборов либо не приводят ни к каким действиям, либо приводят к незначительным изменениям конфигурации, которые можно было бы провести, не выезжая на место.

Секреты эффективного техобслуживания

Автоматизированный контроль обеспечивает индикацию работоспособности производственных активов в режиме реального времени и позволяет определять условия технологического процесса, которые могут непреднамеренно или без ведома персонала привести к неисправности оборудования. Операторы вносят корректировки в работу оборудования, связанного с технологическим процессом, что позволяет избежать его отказов. При наличии развитой системы предупреждения персонал, осуществляющий техническое обслуживание, может работать именно с тем оборудованием, которое в нем на самом деле нуждается, а не терять время на поиски проблем, проводя контроль вручную.

Оценка важности того или иного технологического актива часто определяет и подход к управлению. Если контроль (и защита) в реальном времени критически важного оборудования, такого как большие компрессоры или турбины, является обычной практикой на многих производственных площадках, то онлайн-контроль оборудования второго уровня, такого как насосы, теплообменники, вентиляторные установки, небольшие компрессоры, градирни и теплообменники с воздушным охлаждением (с вентиляторами и оребрением), традиционно считается чрезмерно дорогим, чтобы его реализовывать, или слишком сложным. Даже несмотря на то, что эти не охваченные контролем или контролируемые вручную активы могут быть изначально не классифицированы как «критические», их выход из строя или неисправность может привести к серьезному нарушению технологического процесса или его остановке. В результате - простой и возросшая нагрузка на персонал производственного участка, который будет вынужден заняться внеплановым неотложным ремонтом. Такие активы можно назвать «ключевыми технологическими активами» (рис. 2).

Рис. 2. Ключевые активы обычно не имеют уже установленных систем контроля, но последствия их отказов могут быть серьезными

Решения по контролю в режиме реального времени повышают их общую надежность, одновременно сокращая издержки на техническое обслуживание.

Слагаемые эффективного контроля технологических активов

Контроль технологических активов - это не только сбор данных (рис. 3). Сбор информации, прежде всего, закладывает основу для стратегии контроля активов. Можно использовать существующие средства измерения или легко добавить новые беспроводные каналы измерения. После того как инфраструктура измерений создана, предварительно разработанные решения контроля (используются в режиме «подключи и работай», Plug&Play) принимают необработанные данные и посредством анализа преобразуют их в содержательные предупреждающие сигналы. Данные о технологическом процессе и активах можно объединять для определения условий, которые могут привести к неисправности оборудования. Можно скорректировать условия технологического процесса таким образом, чтобы вовсе исключить подобный вид отказов.

Рис. 3. Cбора данных недостаточно для эффективного контроля. Чтобы программа успешно работала, необходимо сочетание сбора данных, анализа, информированности и действий

Предупреждающие сигналы, которые формируются путем анализа данных и их объединения, полезны только в том случае, если они вовремя доходят до тех сотрудников, которым они предназначены. Организация процесса информирования - очень важная составляющая автоматизированной системы контроля. Подобной информированности можно достичь разными способами, наиболее эффективный из которых - автоматическое оповещение. Предупреждающие сигналы в форме текстовых сообщений или электронной почты гарантируют, что информация сразу же дойдет до нужного человека.

После того как предупреждающий сигнал принят, ответственный сотрудник приступает к решению возникших проблем. Удаленный доступ через планшетный компьютер или смартфон позволяет практически мгновенно провести диагностику и начать действовать. При необходимости можно оповестить узких специалистов, которые смогут также дистанционно войти в систему и оказать помощь в диагностике проблемы. Благодаря автоматизированной системе оповещения возможно также периодическое формирование и рассылка отчетов. Эти отчеты могут включать в себя тенденции, отражающие изменение эксплуатационной готовности активов, по которым можно увидеть ухудшение работы и предотвратить приближающийся отказ.

Таким образом, автоматизированный мониторинг в сочетании с автоматически формируемыми сигналами предупреждения и возможностью дистанционного доступа представляет собой мощное средство контроля эксплуатационных характеристик технологических активов.

Критические производственные активы и дистанционный контроль в действии

Одной из площадок, где реализованы преимущества дистанционного контроля технологических активов, является университетский исследовательский городок Дж. Дж. Пикла Техасского университета в Остине (США). Здесь реализуется исследовательская программа Separations, в которой участвуют представители промышленности и ученые. В рамках программы проводятся фундаментальные исследования для химических, биотехнологических, нефте- и газоперерабатывающих, фармацевтических и пищевых компаний.

В настоящее время один из исследовательских проектов Separations - удаление углекислого газа из дымовых газов. Этот технологический процесс включает в себя абсорбционную и отпарную колонны и связанное с ними оборудование: насосы, вентиляторы и теплообменники. Технологический процесс не предполагает резервирования оборудования, поэтому важно наладить его надлежащее техническое обслуживание и поддержку рабочего состояния. Потеря одного элемента означает остановку всего технологического процесса до завершения ремонта.

Чтобы снизить риск внепланового простоя, были успешно внедрены стратегии контроля критических активов для насосов, теплообменников и вентиляторов. Теперь персонал получает информацию о работоспособности производственных активов в режиме реального времени и контролирует условия технологического процесса (рис. 4). Когда они становятся такими, что могут привести к ухудшению работоспособности оборудования, предпринимаются корректирующие действия, призванные не допустить повреждения или отказа в дальнейшем. Например, сигналы предупреждения об усиливающейся вибрации говорят о надвигающихся отказах и дают время на проведение обслуживания до того, как такие отказы произойдут.

Рис. 4. Беспроводной датчик вибрации, установленный на насосе, обеспечивает ценными данными автоматизированную систему контроля

Для обеспечения своевременной передачи сигналов предупреждения надлежащим сотрудникам ученые Техасского университета сделали еще один шаг вперед, создав инфраструктуру дистанционного контроля. Предупреждающие сигналы о таких событиях, как засорение теплообменника, обнаружение резонансной частоты вращения, утечки углеводородов и кавитации насоса, могут автоматически направляться персоналу на производственной площадке, а также удаленным экспертам (узкоспециализированным опытным специалистам), когда состояние, приводящее к отказу, еще только начинает проявлять себя.

Помимо мониторинга оборудования технологического процесса, система дистанционного контроля, известная как система интеллектуальных центров управления (Intelligent Operations Center, iOps), проверяет исправность системы управления и выдает такие сигналы предупреждения, как, например, сигнал о перегруженном ПК или отказавшем резервном контроллере. Эти предупреждающие сигналы автоматически могут быть отправлены текстовым сообщением или на электронную почту. Через удаленное соединение эксперты могут дистанционно оказывать помощь в диагностике проблем оборудования и помогать в проведении соответствующих корректирующих мероприятий. Входить в систему они могут, используя защищенный доступ к виртуальной частной сети. При доступе в систему с помощью планшетного компьютера или смартфона функции диагностики становятся доступны мгновенно.

Используя инфраструктуру дистанционного контроля, можно периодически формировать отчеты в соответствии с потребностями заказчика и автоматически рассылать их. Эти отчеты содержат тенденции изменения работоспособности технологических активов и систем и ясно указывают на то, какое оборудование или системы требуют внимания. В Техасском университете удаленные эксперты снабжены информацией и готовы принять меры при возникновении неблагоприятных условий, будь то кавитация в насосе или перегрузка ПК. Это и можно назвать автоматизированным дистанционным контролем.

На рис. 5 показан процесс дистанционного контроля, реализованный в Техасском университете. В центре рисунка - производственная установка и диспетчерская с операторами. Стратегии контроля реализованы для насосов, теплообменников и вентиляторов, и эти решения используют данные от работающего оборудования, чтобы формировать предупреждающие сигналы и передавать их в диспетчерскую. Но что происходит, если оператор не в диспетчерской или он отвлекся от экрана? Даже если оператора нет на месте, центр iOps способен круглосуточно контролировать любые предупреждающие сигналы посредством установленных средств дистанционного контроля.

Рис. 5. Процесс автоматизированного дистанционного контроля, реализованный в Техасском университете

Если имеется проблема с насосом, например кавитация, система контроля ключевых технологических активов обнаружит ее, собрав, объединив и проанализировав данные об оборудовании и технологическом процессе. Предупреждающий сигнал и информация о работоспособности оборудования в процентном значении будут направлены в устройство дистанционного контроля, а затем в центр iOps, после чего центр связывается с местной службой на объекте, а при необходимости и с удаленным экспертом. Эксперт входит в систему, диагностирует проблему и предлагает меры по исправлению ситуации. Совместно с местной службой они определяют необходимые действия, а затем оператор в Остине выполняет корректирующие мероприятия и устраняет неисправность, прежде чем она превратится в отказ. Такой способ гарантирует, что неисправность не останется незамеченной и проблемы будут решаться быстро и эффективно.

* * *
При использовании новейших достижений в области беспроводных систем и технологий связи эра дистанционного онлайнового контроля производственного оборудования становится реальностью. Беспроводные технологии позволяют легко и экономично добавлять недостающие каналы измерения для ключевых технологических активов. Системы контроля работают по типу Plug&Play и обеспечивают простой сбор и анализ данных. Дистанционный контроль и автоматизированные предупреждающие сигналы гарантируют, что сигналы, сформированные системами контроля, не пропадут и корректирующие мероприятия будут проведены до возникновения незапланированного простоя из-за отказа оборудования.

Более подробная информация об управлении технологическими активами предприятия и системе управления размещена на сайте www.emersonprocess.com/ru/DeltaV .

Emerson Process Management, одно из подразделений Emerson, работает в области автоматизации технологических процессов производства для различных отраслей промышленности. Компания разрабатывает и производит инновационные продукты и технологии, консультирует, проектирует, осуществляет управление проектами и сервисное обслуживание для максимально эффективной работы предприятия.



Включайся в дискуссию
Читайте также
Ангелы Апокалипсиса – вострубившие в трубы
Фаршированные макароны «ракушки
Как сделать бисквит сочным Творожные кексы с вишней