Подпишись и читай
самые интересные
статьи первым!

Процесс фотосинтез: кратко и понятно и для детей. Фотосинтез: световая и темновая фазы

Фотосинтез

Фотосинез – это процесс
трансформации
поглощенной организмом
энергии света в
химическую энергию
органических
(неорганических)
соединений.
Главная роль восстановление СО2 до
уровня углеводов с
использованием энергии
света.

Развитие учения о фотосинтезе

Климе́нт Арка́дьевич Тимиря́зев
(22 мая (3 июня) 1843, Петербург- 28
апреля 1920, Москва) Научные труды
Тимирязева, посвящены вопросу о
разложении атмосферной углекислоты
зелёными растениями под влиянием
солнечной энергии. Изучение состава и
оптических свойств зелёного пигмента
растений (хлорофилла), его генезиса,
физических и химических условий
разложения углекислоты, определение
составных частей солнечного луча,
принимающих участие в этом явлении,
изучение количественного отношения
между поглощенной энергией и
произведённой работой.

Джозеф Пристли (13 марта
1733-6 февраля 1804) -
британский священникдиссентер, естествоиспытатель,
философ, общественный деятель.
Вошёл в историю прежде всего
как выдающийся химик,
открывший кислород и
углекислый газ

Пьер Жозеф Пельтье - (22 марта 1788 - 19 июля
1842) - французский химик и фармацевт, один из
основателей химии алкалоидов.
В 1817 году, вместе с Жозеф Бьенеме Каванту, он
выделил зелёный пигмент из листьев растений, который
они назвали хлорофиллом.

Алексей Николаевич Бах
(5 (17) марта 1857 - 13 мая,
1946) - советский биохимик и
физиолог растений. Высказал
мысль о том, что ассимиляция СО2
при фотосинтезе является
сопряженным окислительновосстановительным процессом,
происходящим за счет водорода и
гидроксила воды, причем кислород
выделяется из воды через
промежуточные перекисные
соединения.

Общее уравнение фотосинтеза

6 СО2 + 12 Н2О
С6Н12О6 + 6 О2 + 6 Н2О

У высших растений фотосинтез осуществляется в
специализированных клетках органоидов листьев –
хлоропластах.
Хлоропласты – это округлые, или дискообразные
тельца длиной 1-10 мкм, толщиной до 3 мкм. Содержание
их в клетках от 20 до 100.
Химический состав (% на сухую массу):
Белок - 35-55
Липиды – 20-30
Углеводы – 10
РНК – 2-3
ДНК – до 0,5
Хлорофилл – 9
Каротиноиды – 4,5

Строение Хлоропласта

10. Происхождение хлоропластов

Виды формирования хлоропластов:
Деление
Почкование
Ядерный путь
темнота
ядро
инициальная
частица
свет
проламиллярное
тело
пропластида
хлоропласт
схема ядерного пути

11. Онтогенез хлоропластов

12.

Хлоропласты - зелёные пластиды, которые
встречаются в клетках растений и водорослей.
Ультраструктура хлоропласта:
1. наружняя мембрана
2. межмембранное
пространство
3. внутренняя мембрана
(1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. плстоглобула (капля жира)

13. Пигменты фотосинтезирующих растений

хлорофиллы
фикобилины
Фикобилины
каротиноиды
флавоноидные
пигменты

14. Хлорофиллы

Хлорофи́лл -
зелёный пигмент,
обусловливающий
окраску хлоропластов
растений в зелёный
цвет. По химическому
строению
хлорофиллы -
магниевые комплексы
различных
тетрапирролов.
Хлорофиллы имеют
порфириновое
строение.

15.

Хлорофиллы
Хлорофилл «а»
(сине-зеленые
бактерии)
Хлорофилл «c»
(бурые водоросли)
Хлорофилл «b»
(высшие растения,
зеленые, харовые
водоросли)
Хлорофилл «d»
(красные водоросли)

16. Фикобилины

Фикобилины – это
пигменты,
представляющие собой
вспомогательные
фотосинтетические
пигменты, которые могут
передавать энергию
поглощенных квантов
света на хлорофилл,
расширяя спектр действия
фотосинтеза.
Открытые тетрапиррольные
структуры.
Встречаются у водорослей.

17. Каротиноиды

Структурная формула

18.

Каротиноиды – это
жирорастворимые
пигменты желтого,
красного и оранжевого
цвета. Придают
окраску большинству
оранжевых овощей и
фруктов.

19. Группы каротиноидов:

Каротины - жёлтооранжевый пигмент,
непредельный углеводород
из группы каротиноидов.
Формула С40H56. Нерастворим
в воде, но растворяется в
органических растворителях.
Содержится в листьях всех растений, а также в
корне моркови, плодах шиповника и др. Является
провитамином витамина А.
2.
Ксантофиллы - растительный пигмент,
кристаллизуется в призматических кристаллах
жёлтого цвета.
1.

20. Флавоноидные пигменты

Флавоноиды -это группа
водорастворимых природных
фенольных соединений.
Представляют собой
гетероциклические
кислородсодержащие
соединения преимущественно
желтого, оранжевого, красного
цвета. Они принадлежат к
соединениям С6-С3-С6 ряда -
в их молекулах имеются два
бензольных ядра, соединенных
друг с другом трехуглеродным
фрагментом.
Структура флавонов

21. Флавоноидные пигменты:

Антоцианы - природные вещества, красящие растения;
относятся к гликозидам.
Флавоны и флавонолы. Играют роль поглотителей УФлучей тем самым предохраняют хлорофилл и цитоплазму
от разрушения.

22. Стадии фотосинтеза

световая
Осуществляется в
гранах хлоропластов.
Протекает при наличии
света Быстрые < 10 (-5)
сек
темновая
Осуществляется в
бесцветной белковой строме
хлоропластов.
Для протекания свет
необязателен
Медленные ~ 10 (-2) сек

23.

24.

25. Световая стадия фотосинтеза

В ходе световой стадии фотосинтеза образуются
высокоэнергетические продукты: АТФ, служащий в
клетке источником энергии, и НАДФН, использующийся
как восстановитель. В качестве побочного продукта
выделяется кислород.
Общее уравнение:
АДФ + Н3РО4 + Н2О + НАДФ
АТФ + НАДФН + 1/2О2

26.

Спектры поглощения
ФАР: 380 – 710 нм
Каротиноиды: 400550 нм главный
максимум: 480 нм
Хлорофиллы:
в красной области спектра
640-700 нм
в синей - 400-450 нм

27. Уровни возбуждения хлорофилла

1 уровень. Связан с переходом на более высокий
энергетический уровень электронов в системе
сопряжения двух связей
2 уровень. Связан с возбуждением неспаренных электронов
четырех атомов азота и кислорода в порфириновом
кольце.

28. Пигментные системы

Фотосистема I
Состоит из 200 молекул
хлорофилла «а»,50
молекул кароиноидов и 1
молекулы пигмента
(Р700)
Фотосистема II
Состоит из 200 молекул
хлорофилла «а670», 200
молекул хлорофилла «b» и
одной молекулы пигмента
(Р680)

29. Локализация электрон и протон транспортных реакций в тилакоидной мембране

30. Нециклическое фотосинтетическое фосфорилирование (Z – схема, или схема Говинджи)

x
е
Фg е
Фф е
НАДФ
Пх
е
FeS
е
АДФ
Цит b6
е
II ФС
НАДФН
АТФ
е
I ФС
Цит f
е
е
Пц
е
Р680
hV
О2
е
Н2 О
Р700
hV
Фф – феофетин
Пx – пластохинон
FeS – железосерный белок
Цит b6 – цитохром
Пц – пластоционин
Фg – феродоксин
х – неизвестное прир.
соединение

31. Фотосинтетическое фосфорилирование

Фотосинтетическое фосфорилирование – это процесс
образования энергии АТФ и НАДФН при фотосинтезе с
использованием квантов света.
Виды:
нециклическое (Z-схема).Принимают участие две
пигментные системы.
циклическое. Принимает участие фотосистема I.
псевдоциклическое. Идет по типу нециклического, но не
наблюдается видимого выделения кислорода.

32. Циклическое фотосинтетическое фосфорилирование

е
АДФ
Фg
е
АТФ
Цитb6
е
e
Цитf
е
P700
hV
е
АДФ
АТФ
Цит b6 – цитохром
Фg – феродоксин

33. Циклический и нециклический транспорт электронов в хлоропластах

34.

Химизм фотосинтеза
Фотосинтез
осуществляется
путем
последовательного чередования двух фаз:
световой,
протекающей
с
большой
скоростью и не зависящей от температуры;
темновой, названной так потому, что для
происходящих в этой фазе реакций
световая энергия не требуется.

35. Темновая стадия фотосинтеза

В темновой стадии с участием АТФ и НАДФН
происходит восстановление CO2 до глюкозы (C6H12O6).
Хотя свет не требуется для осуществления данного
процесса, он участвует в его регуляции.

36. С3-фотосинтез, цикл Кальвина

Цикл Кальвина или восстановительный
пентозофосфатный цикл состоит из трёх стадий:
Карбоксилирования РДФ.
Восстановления. Происходит восстановление 3-ФГК до
3-ФГА.
Регенерация акцептора РДФ. Осуществляются в серии
реакций взаимопревращений фосфорилируемых сахаров с
различным числом углеродных атомов (триоз, тетроз,
пентоз, гексоз, и т.д.)

37. Общее уравнение цикла Кальвина

Н2СО (Р)
С=О
НО-С-Н + * СО2
Н-С-ОН
Н2СО (Р)
РДФ
Н2*СО (Р)
2 НСОН
СООН
3-ФГК
Н2*СО (Р)
2НСОН
СОО (Р)
1,3-ФГК
Н2*СО (Р)
2НСОН
С=О
Н
3-ФГА
Н2*СО (Р)
2С=О
НСОН
3-ФДА
конденсация, или
полимеризация
Н
Н2СО (Р)
Н2СО (Р)
С=О
С=О
С=О
НСОН
НОСН
НОСН
НОСН
Н*СОН
НСОН
Н*СОН
НСОН
НСОН
НСОН
Н2СО (Р)
Н2СОН
Н2СО (Р)
1,6-дифосфат- фруктозо-6глюкоза-6фруктоза
фосфат
фосфат
Н
С=О
НСОН
НОСН
Н*СОН
НСОН
Н2СОН
глюкоза

38. С4-фотосинтез (путь Хэтча – Слэка – Карпилова)

Осуществляется у растений с двумя типами хлоропласта.
Акцептором СО2 помимо РДФ может быть трех
углеродное соединение – фосфоэнол ПВК (ФЕП)
C4 –путь был впервые обнаружен
у тропических злаков. В работах
Ю.С.Карпилова, М.Хэтча, К.Слэка с
использованием меченого углерода
было показано, что первыми
продуктами фотосинтеза у этих
растений являются органические
кислоты.

39.

40. Фотосинтез по типу толстянковых

Характерно для растений
суккуленотов.В ночное время
фиксируют углерод в
органические кислоты по
преимуществу в яблочные. Это
происходит под действием
ферментов
пируваткарбокислазы. Это
позволяет в течении дня
держать устьица закрытыми и
таким образом сокращать
транспирацию. Этот тип
получил название САМфотосинтез.

41. САМ фотосинтез

При CAM фотосинтезе происходит разделение
ассимиляции CO2 и цикла Кальвина не в
пространстве как у С4, а во времени. Ночью в
вакуолях клеток по аналогичному
вышеописанному механизму при открытых
устьицах накапливается малат, днём при
закрытых устьицах идёт цикл Кальвина. Этот
механизм позволяет максимально экономить
воду, однако уступает в эффективности и С4, и
С3.

42.

43.

Фотодыхание

44. Влияние внутренних и внешних факторов на фотосинтез

Фотосинтез
значительно
изменяется из-за
влияния на него
комплекса часто
взаимодействующих
внешних и внутренних
факторов.

45. Факторы, влияющие на фотосинтез

1.
Онтогенетическое
состояние растения.
Максимальная
интенсивность
фотосинтеза наблюдается
во время перехода
растений от вегетации в
репродуктивную фазу. У
стареющих листьев
интенсивность
фотосинтеза значительно
падает.

46. Факторы, влияющие на фотосинтез

2. Свет. В темноте фотосинтез не происходит, так как
образующийся при дыхании углекислый газ выделяется из
листьев; с увеличением интенсивности света достигается
компенсационная точка при которой поглощение
углекислого газа при фотосинтезе и ее освобождение при
дыхании уравновешивают друг друга.

47. Факторы, влияющие на фотосинтез

3. Спектральный
состав света.
Спектральный
состав солнечного
света испытывает
некоторые
изменения в
течении суток и в
течении года.

48. Факторы, влияющие на фотосинтез

4. СО2.
Является основным
субстратом фотосинтеза и от
его содержания зависит
интенсивность этого процесса.
В атмосфере содержится
0,03% по объему; увеличение
объема углекислого газа от 0,1
до 0,4% увеличивает
интенсивность фотосинтеза до
определенного предела, а
затем сменяется
углекислотным насыщением.

49. Факторы, влияющие на фотосинтез

5.Температура.
У растений умеренной
зоны оптимальная
температура для
фотосинтеза
является 20-25; у
тропических – 2035.

50. Факторы, влияющие на фотосинтез

6. Содержание воды.
Снижение обезвоженности тканей более чем на 20%
приводит к уменьшению интенсивности фотосинтеза и к
его дальнейшему прекращению, если потеря воды будет
более 50%.

51. Факторы, влияющие на фотосинтез

7. Микроэлементы.
Недостаток Fe
вызывает хлороз и
влияет на активность
ферментов. Mn
необходим для
освобождения
кислорода и для
усвоения углекислого
газа. Недостаток Cu и
Zn снижает фотосинтез
на 30%

52. Факторы, влияющие на фотосинтез

8.Загрязняющие
вещества и
химические
препараты.
Вызывают
снижение
фотосинтеза.
Наиболее
опасные
вещества: NO2,
SO2, взвешенные
частицы.

53. Суточный ход фотосинтеза

При умеренной дневной температуре и достаточной
влажности дневной ход фотосинтеза примерно
соответствует изменению интенсивности солнечной
инсоляции. Фотосинтез, начинаясь утром с восходом
солнца, достигает максимума в полуденные часы,
постепенно снижается к вечеру и прекращается с заходом
солнца. При повышенной температуре и уменьшении
влажности максимум фотосинтеза сдвигается на ранние
часы.

54. Вывод

Таким образом фотосинтез – единственный процесс на
Земле, идущий в грандиозных масштабах, связанный с
превращением энергии солнечного света в энергию химических
связей. Эта энергия, запасенная зелеными растениями,
составляет основу для жизнедеятельности всех других
гетеротрофных организмов на Земле от бактерий до человека.

Фотосинтез – это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений.

Процесс фотосинтеза выражают суммарным уравнением:

6СО 2 + 6Н 2 О ® С 6 Н 12 О 6 + 6О 2 .

На свету в зеленом растении из предельно окисленных веществ - диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО 2 , но и нитраты или сульфаты, а энергия может быть направлена на различные эндэргонические процессы, в том числе на транспорт веществ.

Общее уравнение фотосинтеза может быть представлено в виде:

12 Н 2 О → 12 [Н 2 ] + 6 О 2 (световая реакция)

6 СО 2 + 12 [Н 2 ] → С 6 Н 12 О 6 + 6 Н 2 О (темновая реакция)

6 СО 2 + 12 Н 2 О → С 6 Н 12 О 6 + 6 Н 2 О + 6 О 2

или в расчете на 1 моль СО 2:

СО 2 + Н 2 О СН 2 О + О 2

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО 2 . Методами меченых атомов было получено, что Н 2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О 2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н 2 О, а не разложении СО 2 . Способные к фотосинтетической ассимиляции СО 2 бактерии (кроме цианобактерий) используют в качестве восстановителей Н 2 S, Н 2 , СН 3 и другие, и не выделяют О 2 . Такой тип фотосинтеза называется фоторедукцией:

СО 2 + Н 2 S → [СН 2 О] + Н 2 О + S 2 или

СО 2 + Н 2 А → [СН 2 О] + Н 2 О + 2А,

где Н 2 А – окисляет субстрат, донор водорода (у высших растений – это Н 2 О), а 2А – это О 2 . Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО 2 , а [ОН] участвует в реакциях освобождения О 2 и образования Н 2 О.



Солнечная энергия при участии зеленых растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (Δμ H +),энергия фосфатных свя­зей АТФ и других макроэргических соединений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии могут быть использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, т.е. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет «космическую» роль зеленых растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции - от 10 -15 с (в фемтосекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, может быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

* – ССК – светособирающий антенный комплекс фотосинтеза – набор фотосинтетических пигментов – хлорофиллов и каротиноидов; РЦ – реакционный центр фотосинтеза – димер хлорофилла а ; ЭТЦ – электрон-транспортная цепь фотосинтеза – локализована в мембранах тилакоидов хлоропластов (сопряженные мембраны), включает хиноны, цитохромы, железосерные кластерные белки и другие переносчики электронов.

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 - 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия - фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента реакционного центра (П (РЦ)) используется для разделения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделенными зарядами (П (РЦ) - А) содержит определенное количество энер­гии уже в химической форме. Окисленный пигмент П (РЦ) восстанавливает свою структуру за счет окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. В настоящее время молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П * , А -) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. Поэтому необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

III стадия - реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Е n ) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех основных функциональных ком­плексов - фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b 6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФД восст) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО 2 , составляющих IV стадию фотосинтеза.

IV стадия - «темновые» реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в «световых» реакциях фотосинтеза. Скорость «темновых» энзиматических реакций – 10 -2 - 10 4 с.

Таким образом, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков - потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Планетарная роль фотосинтеза

Фотосинтез, возникнув на первых этапах эволюции жизни, остается важнейшим процессом биосферы. Именно зеленые растения по­средством фотосинтеза обеспечивают космическую связь жизни на Земле с Вселенной и определяют экологическое благополучие биосферы вплоть до возможности существования человеческой цивилизации. Фотосинтез - это не только источник пищевых ресурсов и полезных ископаемых, но и фактор сбалансирован­ности биосферных процессов на Земле, включая постоянство содержания кислорода и диоксида углерода в атмосфере, состоя­ние озонового экрана, содержание гумуса в почве, парниковый эффект и т.д.

Глобальная чистая продуктивность фотосинтеза составляет 7–8·10 8 т углерода в год, из которых 7 % непосредственно исполь­зуют на питание, топливо и строительные материалы. В настоя­щее время потребление ископаемого топлива приблизительно сравнялось с образованием биомассы на планете. Ежегодно в ходе фотосинтеза в атмосферу поступает 70–120 млрд. т кисло­рода, обеспечивающего дыхание всех организмов. Одним из важ­нейших последствий выделения кислорода является образование озонового экрана в верхних слоях атмосферы на высоте 25 км. Озон (О 3) образуется в результате фотодиссоциации молекул О 2 под действием солнечной радиации и задерживает большую часть ультрафиолетовых лучей, губительно действующих на все живое.

Существенным фактором фотосинтеза является также стаби­лизация содержания СО 2 в атмосфере. В настоящее время содер­жание СО 2 составляет 0,03–0,04 % по объему воздуха, или 711 млрд. т в пересчете на углерод. Дыхание организмов, Мировой океан, в водах которого растворено в 60 раз больше СО 2 , чем находится в атмосфере, производственная деятельность людей, с одной сто­роны, фотосинтез - с другой, поддерживают относительно по­стоянный уровень СО 2 в атмосфере. Диоксид углерода в атмо­сфере, а также вода поглощают инфракрасные лучи и сохраняют значительное количество теплоты на Земле, обеспечивая необхо­димые условия жизнедеятельности.

Однако за последние десятилетия из-за возрастающего сжига­ния человеком ископаемого топлива, вырубки лесов и разложе­ния гумуса сложилась ситуация, когда технический прогресс сде­лал баланс атмосферных явлений отрицательным. Положение усугубляется и демографическими проблемами: каждые сутки на Земле рождается 200 тыс. человек, которых нужно обеспечить жизненными ресурсами. Эти обстоятельства ставят изучение фо­тосинтеза во всех его проявлениях, от молекулярной организа­ции процесса до биосферных явлений, в ранг ведущих проблем современного естествознания. Важнейшие задачи - повышение фотосинтетической продуктивности сельскохозяйственных посе­вов и насаждений, а также создание эффективных биотехноло­гий фототрофных синтезов.

К.А. Тимирязев первым начал изучать космическую роль зеленых растений. Фотосинтез – это единственный процесс на Земле, идущий в грандиозных масштабах и связанный с превращением энергии солнечного света в энергию химических соединений. Эта космическая энергия, запасенная зелеными растениями, составляет основу жизнедеятельности всех других гетеротрофных организмов на Земле от бактерий до человека. Выделяют 5 основных аспектов космической и планетарной деятельности зеленых растений.

1. Накопление органической массы. В процессе фотосинтеза наземные растения образуют 100-172 млрд.т. биомассы в год (в пересчете на сухое вещество), а растения морей и океанов – 60-70 млрд.т. Общая масса растений на Земле в настоящее время составляет 2402,7 млрд.т., причем 90 % этой массы приходится на целлюлозу. Около 2402,5 млрд.т. приходится на долю наземных растений и 0,2 млрд.т. – на растения гидросферы (недостаток света!). Общая масса животных и микроорганизмов на Земле – 23 млрд.т., то есть 1 % от массы растений. Из этого количества ~ 20 млрд.т. приходится на обитателей суши и ~ 3 млрд.т. – на обитателей гидросферы. За время существования жизни на Земле органические остатки растений и животных накапливались и модифицировались (подстилка, гумус, торф, а в литосфере – каменный уголь; в морях и океанах – толща осадочных пород). При опускании в более глубокие области литосферы из этих остатков под действием микроорганизмов, повышенных температур и давления образовывались газ и нефть. Масса органических веществ подстилки ~ 194 млрд.т.; торфа – 220 млрд.т.; гумуса ~ 2500 млрд.т. Нефть и газ – 10000 – 12000 млрд.т. Содержание органического вещества в осадочных породах по углероду ~ 2 · 10 16 т. Особенно интенсивное накопление органики происходило в палеозое (~ 300 млн. лет назад). Запасенное органическое вещество интенсивно используется человеком (древесина, полезные ископаемые).

2. Обеспечение постоянства содержания СО 2 в атмосфере. Образование гумуса, осадочных пород, горючих полезных ископаемых выводили значительные количества СО 2 из круговорота углерода. В атмосфере Земли становилось все меньше СО 2 и в настоящее время его содержание составляет ~ 0,03–0,04 % по объему или ~ 711 млрд.т. в пересчете на углерод. В кайнозойскую эру содержание СО 2 в атмосфере стабилизировалось и испытывало лишь суточные, сезонные и геохимические колебания (стабилизация растений на уровне современных). Стабилизация содержания СО 2 в атмосфере достигается сбалансированным связыванием и освобождением СО 2 в глобальном масштабе. Связывание СО 2 в фотосинтезе и образование карбонатов (осадочные породы) компенсируется выделением СО 2 за счет других процессов: Ежегодное поступление СО 2 в атмосферу (в пересчете на углерод) обусловлено: дыханием растений – ~ 10 млрд. т.: дыханием и брожением микроорганизмов – ~ 25 млрд.т.; дыханием человека и животных – ~ 1,6 млрд.т. хозяйственной деятельностью людей ~ 5 млрд.т.; геохимическими процессами ~ 0,05 млрд.т. Итого ~ 41,65 млрд.т. Если бы не происходило поступления СО 2 в атмосферу, весь его наличный запас был бы связан за 6–7 лет Мощным резервом СО 2 является Мировой океан, в его водах растворено в 60 раз больше СО 2 , чем его находится в атмосфере. Итак, фотосинтез, дыхание и карбонатная система океана поддерживает относительно постоянный уровень СО 2 в атмосфере. За счет хозяйственной деятельности человека (сжигание горючих полезных ископаемых, вырубка лесов, разложение гумуса) содержание СО 2 в атмосфере начало увеличиваться ~ на 0,23 % в год. Это обстоятельство может иметь глобальные последствия, так как содержание СО 2 в атмосфере влияет на тепловой режим планеты.

3. Парниковый эффект. Поверхность Земли получает теплоту главным образом от Солнца. Часть этой теплоты возвращается в виде ИК лучей. СО 2 и Н 2 О, содержащиеся в атмосфере, поглощают ИК лучи и таким образом сохраняют значительное количество теплоты на Земле (парниковый эффект). Микроорганизмы и растения в процессе дыхания или брожения поставляют ~ 85 % общего количества СО 2 , поступающего ежегодно в атмосферу и вследствие этого влияют на тепловой режим планеты. Тенденция повышения содержания СО 2 в атмосфере может привести к увеличению средней температуры на поверхности Земли таяние ледников (горы и полярные льды) затопление прибрежных зон. Тем не менее, возможно, что повышение концентрации СО 2 в атмосфере будет способствовать усилению фотосинтеза растений, что приведет к связыванию избыточных количеств СО 2 .

4. Накопление О 2 в атмосфере. Первоначально О 2 присутствовал в атмосфере Земли в следовых количествах. В настоящее время он составляет ~ 21 % по объему воздуха. Появление и накопление О 2 в атмосфере связано с жизнедеятельностью зеленых растений. Ежегодно в атмосферу поступает ~ 70–120 млрд.т. О 2 , образованного в фотосинтезе. Особую роль в этом играют леса: 1 га леса за 1 час дает О 2 , достаточно для дыхания 200 человек.

5. Образование озонового экрана на высоте ~ 25 км. О 3 образуется при диссоциации О 2 под действием солнечной радиации. Слой О 3 задерживает большую часть УФ (240-290 нм), губительного для живого. Разрушение озонового экрана планеты – одна из глобальных проблем современности.

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Фотосинтез - ϶ᴛᴏ процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединœений.

Процесс фотосинтеза выражают суммарным уравнением:

6СО 2 + 6Н 2 О ® С 6 Н 12 О 6 + 6О 2 .

На свету в зелœеном растении из предельно окисленных веществ - диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО 2 , но и нитраты или сульфаты, а энергия должна быть направлена на различные эндэргонические процессы, в т.ч. на транспорт веществ.

Общее уравнение фотосинтеза должна быть представлено в виде:

12 Н 2 О → 12 [Н 2 ] + 6 О 2 (световая реакция)

6 СО 2 + 12 [Н 2 ] → С 6 Н 12 О 6 + 6 Н 2 О (темновая реакция)

6 СО 2 + 12 Н 2 О → С 6 Н 12 О 6 + 6 Н 2 О + 6 О 2

или в расчете на 1 моль СО 2:

СО 2 + Н 2 О СН 2 О + О 2

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО 2 . Методами меченых атомов было получено, что Н 2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О 2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н 2 О, а не разложении СО 2 . Способные к фотосинтетической ассимиляции СО 2 бактерии (кроме цианобактерий) используют в качестве восстановителœей Н 2 S, Н 2 , СН 3 и другие, и не выделяют О 2 . Такой тип фотосинтеза принято называть фоторедукцией:

СО 2 + Н 2 S → [СН 2 О] + Н 2 О + S 2 или

СО 2 + Н 2 А → [СН 2 О] + Н 2 О + 2А,

где Н 2 А – окисляет субстрат, донор водорода (у высших растений - ϶ᴛᴏ Н 2 О), а 2А - ϶ᴛᴏ О 2 . Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО 2 , а [ОН] участвует в реакциях освобождения О 2 и образования Н 2 О.

Солнечная энергия при участии зелœеных растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединœений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определœенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всœего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединœений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (Δμ H +),энергия фосфатных свя­зей АТФ и других макроэргических соединœений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии бывают использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, ᴛ.ᴇ. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет ʼʼкосмическуюʼʼ роль зелœеных растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции - от 10 -15 с (в фемтосœекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посœевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, должна быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 - 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия - фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента (П (РЦ)) реакционного центра используется для разделœения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделœенными зарядами (П (РЦ) - А) содержит определœенное количество энер­гии уже в химической форме. Окисленный пигмент П (РЦ) восстанавливает свою структуру за счёт окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. Сегодня молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П * , А -) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. По этой причине необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

III стадия - реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Е n ) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех базовых функциональных ком­плексов - фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b 6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФД восст) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО 2 , составляющих IV стадию фотосинтеза.

IV стадия - ʼʼтемновыеʼʼ реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в ʼʼсветовыхʼʼ реакциях фотосинтеза. Скорость ʼʼтемновыхʼʼ энзиматических реакций – 10 -2 - 10 4 с.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков - потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Общее уравнение фотосинтеза. Значение фотосинтеза, его масштабы. Особенности бактериального фотосинтеза.

Уравнение: 6СО2 + 6Н2О ----> С6Н12О6 + 6О2

Фотосинтез - процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.
Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы - биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты – бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка – карбоновые кислоты), а у зелёных растений – вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.



Включайся в дискуссию
Читайте также
Ангелы Апокалипсиса – вострубившие в трубы
Фаршированные макароны «ракушки
Как сделать бисквит сочным Творожные кексы с вишней